• 제목/요약/키워드: NSGA-II-IS

검색결과 80건 처리시간 0.024초

스케줄링 문제를 위한 멀티로봇 위치 기반 다목적 유전 알고리즘 (Multi-Objective Genetic Algorithm based on Multi-Robot Positions for Scheduling Problems)

  • 최종훈;김제석;정진한;김정민;박장현
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.689-696
    • /
    • 2014
  • This paper presents a scheduling problem for a high-density robotic workcell using multi-objective genetic algorithm. We propose a new algorithm based on NSGA-II(Non-dominated Sorting Algorithm-II) which is the most popular algorithm to solve multi-objective optimization problems. To solve the problem efficiently, the proposed algorithm divides the problem into two processes: clustering and scheduling. In clustering process, we focus on multi-robot positions because they are fixed in manufacturing system and have a great effect on task distribution. We test the algorithm by changing multi-robot positions and compare it to previous work. Test results shows that the proposed algorithm is effective under various conditions.

계승적 나이개념을 가진 다목적 진화알고리즘 개발 (The Development of a New Distributed Multiobjective Evolutionary Algorithm with an Inherited Age Concept)

  • 강영훈;변증남
    • 한국지능시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.689-694
    • /
    • 2001
  • Recently, several promising multiobjective evolutionary algorithm such as SPEA. NSGA-II, PESA, and SPEA2 have been developed. In this paper, we also propose a new multiobjective evolutionary algorithm that compares to them. In the algorithm proposed in this paper, we introduce a novel concept, “inherited age” and total algorithm is executed based on the inherited age concept. Also, we propose a new sharing algorithm, called objective classication sharing algorithm(OCSA) that can preserve the diversity of the population. We will show the superior performance of the proposed algorithm by comparing the proposed algorithm with other promising algorithms for the test functions.

  • PDF

CFD를 이용한 유동제어 핀의 최적설계 (The Design Optimization of a Flow Control Fin Using CFD)

  • 위다얼;김동준
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.174-181
    • /
    • 2012
  • In this paper, the Flow Control Fin(FCF) optimization has been carried out using computational fluid dynamics(CFD) techniques. This study focused on evaluation for the performance of the FCF attached in the stern part of the ship. The main advantage of FCF is to enhance the resistance performance through the lift generation with a forward force component on the foil section, and the propulsive performance by the uniformity of velocity distribution on the propeller plane. This study intended to evaluate these functions and to find optimized FCF form for minimizing viscous resistance and equalizing wake distribution. Four parameters of FCF are used in the study, which were angle and position of FCF, longitudinal location, transverse location, and span length in the optimization process. KRISO 300K VLCC2(KVLCC2) was chosen for an example ship to demonstrate FCF for optimization. The optimization procedure utilized genetic algorithms (GAs), a gradient-based optimizer for the refinement of the solution, and Non-dominated Sorting GA-II(NSGA-II) for Multiobjective Optimization. The results showed that the optimized FCF could enhance the uniformity of wake distribution at the expense of viscous resistance.

다목적 최적화 기법을 이용한 편심가새골조의 역량설계 (Capacity Design of Eccentrically Braced Frame Using Multiobjective Optimization Technique)

  • 홍윤수;유은종
    • 한국전산구조공학회논문집
    • /
    • 제33권6호
    • /
    • pp.419-426
    • /
    • 2020
  • 본 연구에서는 철골편심가새골조 시스템을 대상으로 다목적최적화기법을 통해 설계를 수행하고 그 결과를 분석하였다. 최적화 설계를 위해 유전 알고리즘의 일종인 NSGA-II를 활용하였다. 여기서, 목적함수는 이율배반적 관계를 갖는 구조물량과 층간변위로 하여 최소화되고, 제약조건에는 구조기준에서 요구하는 내력비, 링크의 회전각 등을 포함하였다. 제약조건은 최적화 알고리즘 내에서 각 항목을 위반할수록 목적함수 값을 크게 증가시키는 벌금함수의 형태를 가지고 있다. 설계기준에서 EBF 시스템의 설계규정은 링크 부재만 항복이 허용되며 나머지 부재는 링크 항복 시 발생되는 부재력을 탄성상태에서 견디도록 의도한 역량설계법에 기초한다. 그러나 최적화를 통해 도출된 결과 중 일부는 구조기준의 설계조항은 만족하지만 특정층 링크에 소성변형이 집중되어 연약층을 형성함으로써 기준에서 의도하는 역량설계의 원칙을 위배하는 결과가 나타났다. 이를 해결하기 위해 모든 링크의 전단 초과강도계수 중 최대값이 최소값의 1.25배를 넘지 않도록 하는 제약식을 추가하였다. 새로운 제약식을 추가한 경우 모든 최적해는 설계기준과 역량설계의 원칙을 준수하는 것으로 나타났다. 모든 설계안에서 보 경간에 대한 링크의 길이비는 전단링크의 범주에 해당하는 10% ~ 14%였다. 전체적으로 설계안들은 링크의 초과강도 계수비가 가장 지배적인 제약으로 작용하였으며, 구조기준의 요구사항 중 층간변위와 내력비 등의 항목에서 허용치에 비해 매우 보수적으로 설계되었다.

다목적 유전자알고리즘을 이용한 스마트 TMD의 퍼지제어 (Fuzzy Control of Smart TMD using Multi-Objective Genetic Algorithm)

  • 강주원;김현수
    • 한국전산구조공학회논문집
    • /
    • 제24권1호
    • /
    • pp.69-78
    • /
    • 2011
  • 본 연구에서는 스마트 TMD를 효과적으로 제어할 수 있는 퍼지제어알고리즘을 개발하기 위하여 다목적 유전자알고리즘을 이용한 최적화기법을 제안하였다. 예제구조물로는 풍하중을 받는 76층 벤치마크건물을 선택하였다. 스마트 TMD를 구성하기 위하여 100kN 용량의 MR 감쇠기를 사용하였고, 스마트 TMD의 진동주기는 예제구조물의 1차모드 고유진동주기에 맞추어 조율되었다. MR 감쇠기의 감쇠력은 예제구조물의 풍응답을 최소화할 수 있도록 퍼지제어기를 통해서 조절된다. 퍼지제어기의 입력변수는 75층의 가속도 응답과 스마트 TMD의 변위응답으로 하였고, 출력변수는 MR 감쇠기로 전달되는 명령전압으로 하였다. 퍼지제어기의 최적화를 위하여 다목적 유전자알고리즘인 NSGA-II 기법이 사용되었고, 이때 75층의 가속도 응답과 스마트 TMD의 변위응답을 목적함수로 사용하였다. 최적화 결과, 구조물의 풍응답과 STMD의 변위응답을 동시에 적절히 제어할 수 있는 다수의 퍼지제어기를 얻을 수 있었다. 수치해석을 통해서 스마트 TMD의 성능이 수동 TMD에 비하여 월등히 뛰어남을 알 수 있었고 경우에 따라서는 샘플 능동 TMD보다 더 우수한 제어성능을 발휘하였다.

Optimization of Data Placement using Principal Component Analysis based Pareto-optimal method for Multi-Cloud Storage Environment

  • Latha, V.L. Padma;Reddy, N. Sudhakar;Babu, A. Suresh
    • International Journal of Computer Science & Network Security
    • /
    • 제21권12호
    • /
    • pp.248-256
    • /
    • 2021
  • Now that we're in the big data era, data has taken on a new significance as the storage capacity has exploded from trillion bytes to petabytes at breakneck pace. As the use of cloud computing expands and becomes more commonly accepted, several businesses and institutions are opting to store their requests and data there. Cloud storage's concept of a nearly infinite storage resource pool makes data storage and access scalable and readily available. The majority of them, on the other hand, favour a single cloud because of the simplicity and inexpensive storage costs it offers in the near run. Cloud-based data storage, on the other hand, has concerns such as vendor lock-in, privacy leakage and unavailability. With geographically dispersed cloud storage providers, multicloud storage can alleviate these dangers. One of the key challenges in this storage system is to arrange user data in a cost-effective and high-availability manner. A multicloud storage architecture is given in this study. Next, a multi-objective optimization problem is defined to minimise total costs and maximise data availability at the same time, which can be solved using a technique based on the non-dominated sorting genetic algorithm II (NSGA-II) and obtain a set of non-dominated solutions known as the Pareto-optimal set.. When consumers can't pick from the Pareto-optimal set directly, a method based on Principal Component Analysis (PCA) is presented to find the best answer. To sum it all up, thorough tests based on a variety of real-world cloud storage scenarios have proven that the proposed method performs as expected.

Analysis and optimization research on latch life of control rod drive mechanism based on approximate model

  • Ling, Sitong;Li, Wenqiang;Yu, Tianda;Deng, Qiang;Fu, Guozhong
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4166-4178
    • /
    • 2021
  • The Control Rod Drive Mechanism (CRDM) is an essential part of the reactor, which realizes the start-stop and power adjustment of the reactor by lifting and lowering the control rod assembly. As a moving part in CRDM, the latch directly contacts with the control rod assembly, and the life of latch is closely related to the service life of the reactor. In this paper, the relationship between the life of the latch and the step stress, friction stress, and impact stress in the process of movement is analyzed, and the optimization methodology and process of latch life based on the approximate model are proposed. The design variables that affect the life of the latch are studied through the experimental design, and the optimization objective of design variables based on the latch life is established. Based on this, an approximate model of the life of the latch is built, and the multi-objective optimization of the life of the latch is optimized through the NSGA-II algorithm.

Robust multi-objective optimization of STMD device to mitigate buildings vibrations

  • Pourzeynali, Saeid;Salimi, Shide;Yousefisefat, Meysam;Kalesar, Houshyar Eimani
    • Earthquakes and Structures
    • /
    • 제11권2호
    • /
    • pp.347-369
    • /
    • 2016
  • The main objective of this paper is the robust multi-objective optimization design of semi-active tuned mass damper (STMD) system using genetic algorithms and fuzzy logic. For optimal design of this system, it is required that the uncertainties which may exist in the system be taken into account. This consideration is performed through the robust design optimization (RDO) procedure. To evaluate the optimal values of the design parameters, three non-commensurable objective functions namely: normalized values of the maximum displacement, velocity, and acceleration of each story level are considered to minimize simultaneously. For this purpose, a fast and elitist non-dominated sorting genetic algorithm (NSGA-II) approach is used to find a set of Pareto-optimal solutions. The torsional effects due to irregularities of the building and/or unsymmetrical placements of the dampers are taken into account through the 3-D modeling of the building. Finally, the comparison of the results shows that the probabilistic robust STMD system is capable of providing a reduction of about 52%, 42.5%, and 37.24% on the maximum displacement, velocity, and acceleration of the building top story, respectively.

Systematic probabilistic design methodology for simultaneously optimizing the ship hull-propeller system

  • Esmailian, Ehsan;Ghassemi, Hassan;Zakerdoost, Hassan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권3호
    • /
    • pp.246-255
    • /
    • 2017
  • The proposed design methodology represents a new approach to optimize the propeller-hull system simultaneously. In this paper, two objective functions are considered, the first objective function is Lifetime Fuel Consumption (LFC) and the other one is cost function including thrust, torque, open water and skew efficiencies. The variables of the propeller geometries (Z, EAR, P/D and D) and ship hull parameters (L/B, B/T, T and $C_B$) are considered to be optimized with cavitation, blades stress of propeller. The well-known evolutionary algorithm based on NSGA-II is employed to optimize a multi-objective problem, where the main propeller and hull dimensions are considered as design variables. The results are presented for a series 60 ship with B-series propeller. The results showed that the proposed method is an appropriate and effective approach for simultaneously propeller-hull system design and is able to minimize both of the objective functions significantly.

준능동 스마트 감쇠기를 사용한 빌딩구조물의 지진응답제어 (Seismic Response Control of Building Structures using Semiactive Smart Dampers)

  • 김현수;;이동근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.451-458
    • /
    • 2006
  • The goal of many researchers in the field of structural engineering is to reduce both damage to building structures and discomfort of their inhabitants during strong motion seismic events. The present paper reports on analytical work conducted with this aim in mind as a prior research of experimental study. A four-story, 6.4 m tall, laboratory model of a building is employed as a example structure. The laboratory structure has graphite epoxy columns and each floor is equipped with a chevron brace that serves to resist inter-story drift with the installation of a magnetorheological (MR) damper. An artificial excitation has been generated with a robust range of seismic characteristics. A series of numerical simulations demonstrates that an optimized fuzzy controller is capable of robust performance for a variety of seismic base motions. Optimization of the fuzzy controller is achieved using multi-objective genetic algorithm(MOGA), i.e. NSGA-II. Multiple objective functions are used in order to reduce both peak and root-means-squared displacement and accelerations at the floor levels of the building.

  • PDF