DOI QR코드

DOI QR Code

Systematic probabilistic design methodology for simultaneously optimizing the ship hull-propeller system

  • Esmailian, Ehsan (Department of Maritime Engineering, Amirkabir University of Technology (AUT)) ;
  • Ghassemi, Hassan (Department of Maritime Engineering, Amirkabir University of Technology (AUT)) ;
  • Zakerdoost, Hassan (Department of Maritime Engineering, Amirkabir University of Technology (AUT))
  • Published : 2017.05.31

Abstract

The proposed design methodology represents a new approach to optimize the propeller-hull system simultaneously. In this paper, two objective functions are considered, the first objective function is Lifetime Fuel Consumption (LFC) and the other one is cost function including thrust, torque, open water and skew efficiencies. The variables of the propeller geometries (Z, EAR, P/D and D) and ship hull parameters (L/B, B/T, T and $C_B$) are considered to be optimized with cavitation, blades stress of propeller. The well-known evolutionary algorithm based on NSGA-II is employed to optimize a multi-objective problem, where the main propeller and hull dimensions are considered as design variables. The results are presented for a series 60 ship with B-series propeller. The results showed that the proposed method is an appropriate and effective approach for simultaneously propeller-hull system design and is able to minimize both of the objective functions significantly.

Keywords

References

  1. Benini, E., 2003. Multiobjective design optimization of B-screw series propellers using evolutionary algorithms. Mar. Technol. 40(4), 229-238.
  2. Chen, J.-H., Shih, Y.-S., 2007. Basic design of a series propeller with vibration consideration by genetic algorithm. J. Mar. Sci. Technol. 12(3), 119-129. https://doi.org/10.1007/s00773-007-0249-6
  3. Cho, J., Lee, S.-C., 1998. Propeller blade shape optimization for efficiency improvement. Comput. Fluids 27(3), 407-419. https://doi.org/10.1016/S0045-7930(97)00035-2
  4. Choi, H.J., 2015. Hull-form optimization of a container ship based on bellshaped modification function. Int. J. Nav. Archit. Ocean. Eng. 7(3), 478-489. https://doi.org/10.1515/ijnaoe-2015-0034
  5. Day, A.H., Doctors, L.J., 1997. Resistance optimization of displacement vessels on the basis of principal parameters. J. Ship Res. 41(4), 249-259.
  6. Deb, K., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182-197. https://doi.org/10.1109/4235.996017
  7. Dejhalla, R., Mrsa, Z., Vukovic, S., 2002. A genetic algorithm approach to the problem of minimum ship wave resistance. Mar. Technol. 39(3), 187-195.
  8. Gaafary, M., El-Kilani, H., Moustafa, M., 2011. Optimum design of B-series marine propellers. Alex. Eng. J. 50(1), 13-18. https://doi.org/10.1016/j.aej.2011.01.001
  9. Ghassemi, H., 2009. The effect of wake flow and skew angle on the ship propeller performance. Sci. Iran. 16(2), 149-158.
  10. Ghose, J.P., Gokarn, R.P., 2004. Basic Ship Propulsion. Allied Publishers.
  11. Grigoropoulos, G.J., Chalkias, D.S., 2010. Hull-form optimization in calm and rough water. Comput.Aided Des. 42(11), 977-984. https://doi.org/10.1016/j.cad.2009.11.004
  12. Kamarlouei, M., Ghassemi, H., Aslansefat, Nematy, D., 2014. Multi-objective evolutionary optimization technique applied to propeller design. Acta Polytech. Hung. 11(9).
  13. Lee, C.-S., Choi, Y.-D., Ahn, B.-K., Shin, M.-S., Jang, H.-G., 2010. Performance optimization of marine propellers. Int. J. Nav. Archit. Ocean. Eng. 2(4), 211-216. https://doi.org/10.2478/IJNAOE-2013-0038
  14. Lee, Y.-J., Lin, C.-C., 2004. Optimized design of composite propeller. Mech. Adv. Mater. Struct. 11(1), 17-30. https://doi.org/10.1080/15376490490257639
  15. Mirjalili, S., Lewis, A., Mirjalili, S.A.M., 2015. Multi-objective optimisation of marine propellers. Procedia Comput. Sci. 51, 2247-2256. https://doi.org/10.1016/j.procs.2015.05.504
  16. Motley, M.R., Nelson, M., Young, Y.L., 2012. Integrated probabilistic design of marine propulsors to minimize lifetime fuel consumption. Ocean. Eng. 45, 1-8. https://doi.org/10.1016/j.oceaneng.2012.01.032
  17. Nelson, M., Temple, D.W., Hwang, J.T., Young, Y.L., Martines, J.R.R.A., Collette, M., 2013. Simultaneous optimization of propellerehull systems to minimize lifetime fuel consumption. Appl. Ocean Res. 43, 46-52. https://doi.org/10.1016/j.apor.2013.07.004
  18. Park, H., Choi, J.E., Chun, H.H., 2015. Hull-form optimization of KSUEZMAX to enhance resistance performance. Int. J. Nav. Archit. Ocean. Eng. 7(1), 100-114. https://doi.org/10.1515/ijnaoe-2015-0008
  19. Plucinski, M.M., Young, Y.L., Liu, Z., 2007. Optimization of a self-twisting composite marine propeller using genetic algorithms. In: 16th International Conference on Composite Materials, Kyoto, Japan.
  20. Temple, D., Collette, M., 2012. Multi-objective hull form optimization to compare build cost and lifetime fuel consumption. In: International Marine Design Conference, IMDC, Glasgow, Scotland, 11-14 06, II, pp. 391-403.
  21. Tuck, E., Scullen, D., Lazauskas, L., 2002. Wave patterns and minimum wave resistance for high-speed vessels. In: 24th Symposium on Naval Hydrodynamics, Fukuoka, Japan.
  22. Xie, G., 2011. Optimal preliminary propeller design based on multi-objective optimization approach. Procedia Eng. 16, 278-283. https://doi.org/10.1016/j.proeng.2011.08.1084
  23. Yang, Y.S., Park, C.K., Lee, K.H., Suh, J.C., 2007. A study on the preliminary ship design method using deterministic approach and probabilistic approach including hull form. Struct. Multidiscip. Optim. 33(6), 529-539. https://doi.org/10.1007/s00158-006-0063-5
  24. Zakerdoost, H., Ghassemi, H., Ghiasi, M., 2013. Ship hull form optimization by evolutionary algorithm in order to diminish the resistance. J. Mar. Sci. Appl. 12(2), 170-179. https://doi.org/10.1007/s11804-013-1182-1

Cited by

  1. Influence of EEDI (Energy Efficiency Design Index) on Ship-Engine-Propeller Matching vol.7, pp.12, 2017, https://doi.org/10.3390/jmse7120425