• Title/Summary/Keyword: NSGA

Search Result 111, Processing Time 0.026 seconds

Multi-Objective Shape Optimization of an Axial Fan Blade

  • Samad, Abdus;Lee, Ki-Sang;Kim, Kwang-Yong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm(NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis is presented in this work. Reynolds-averaged Navier-Stokes(RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

Approximate Multi-Objective Optimization of a Quadcopter through Proportional-Integral-Derivative Control (PID 제어를 통한 쿼드콥터 다중목적 근사최적설계)

  • Yoon, Jaehyun;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.673-679
    • /
    • 2015
  • In this study, the nondominated sorting genetic algorithm (NSGA-II) is used to obtain the optimized proportional-integral-derivative (PID) gain value that can quickly recover the motion of a quadcopter after a disturbance. Prior to PID control, the four-rotor quadcopter interval was defined using computational fluid dynamics (CFD). Through the definition of this model, the PID control algorithm was generated. To construct a response surface model, D-optimal programming was used for the generation of experimental points. For this purpose, a gain value that satisfies both the roll and altitude PID gain values is obtained. Using the NSGA-II, the gain value of shorten time of the quadcopter motion control can be optimized.

Goal-Pareto based NSGA Optimization Algorithm (Goal-Pareto 기반의 NSGA 최적화 알고리즘)

  • Park, Jun-Su;Park, Soon-Kyu;Shin, Yo-An;Yoo, Myung-Sik;Lee, Won-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.2 s.314
    • /
    • pp.108-115
    • /
    • 2007
  • This paper proposes a new optimization algorithm prescribed by GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm) whose result satisfies the user's needs and goals to enhance the performance of optimization. Typically, lots of real-world engineering problems encounter simultaneous optimization subject to satisfying prescribed multiple objectives. Unfortunately, since these objectives might be mutually competitive, it is hardly to find a unique solution satisfying every objectives. Instead, many researches have been investigated in order to obtain an optimal solution with sacrificing more than one objectives. This paper introduces a novel optimization scheme named by GBNSGA obeying both goals as well as objectives as possible as it can via allocating candidated solutions on Pareto front, which enhances the performance of Pareto based optimization. The performance of the proposed GBNSGA will be compared with that of the conventional NSGA and weighted-sum approach.

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (II): Application of Preference Ordering (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(II): 선호적 순서화의 적용)

  • Koo, Bo-Young;Kim, Tae-Soon;Jung, Il-Won;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.687-696
    • /
    • 2007
  • Preference ordering approach is applied to optimize the parameters of Tank model using multi-objective genetic algorithm (MOGA). As more than three multi-objective functions are used in MOGA, too many non-dominated optimal solutions would be obtained thus the stakeholder hardly find the best optimal solution. In order to overcome this shortcomings of MOGA, preference ordering method is employed. The number of multi-objective functions in this study is 4 and a single Pareto-optimal solution, which is 2nd order efficiency and 3 degrees preference ordering, is chosen as the most preferred optimal solution. The comparison results among those from Powell method and SGA (simple genetic algorithm), which are single-objective function optimization, and NSGA-II, multi-objective optimization, show that the result from NSGA-II could be reasonalby accepted since the performance of NSGA-II is not deteriorated even though it is applied to the verification period which is totally different from the calibration period for parameter estimation.

Multi-Objective Job Scheduling Model Based on NSGA-II for Grid Computing (그리드 컴퓨팅을 위한 NSGA-II 기반 다목적 작업 스케줄링 모델)

  • Kim, Sol-Ji;Kim, Tae-Ho;Lee, Hong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.13-23
    • /
    • 2011
  • Grid computing is a new generation computing technology which organizes virtual high-performance computing system by connecting and sharing geographically distributed heterogeneous resources, and performing large-scaled computing operations. In order to maximize the performance of grid computing, job scheduling is essential which allocates jobs to resources effectively. Many studies have been performed which minimize total completion times, etc. However, resource costs are also important, and through the minimization of resource costs, the overall performance of grid computing and economic efficiency will be improved. So in this paper, we propose a multi-objective job scheduling model considering both time and cost. This model derives from the optimal scheduling solution using NSGA-II, which is a multi objective genetic algorithm, and guarantees the effectiveness of the proposed model by executing experiments with those of existing scheduling models such as Min-Min and Max-Min models. Through experiments, we prove that the proposed scheduling model minimizes time and cost more efficiently than existing scheduling models.

A Study on the Operational Scheduling for ROK's Navy Ships Using NSGA-II (NSGA-II를 이용한 한국해군 함정 운용계획에 대한 연구)

  • Jung, Whan-Sik;Lee, Jae-Yeong;Lee, Yong-Dae
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.55-62
    • /
    • 2010
  • This paper studies the problem seeking an efficient operational scheduling for battle ships in the Republic of Korea's navy. The ships' availability means that their main systems such as weapons, navigation and propulsion are in full operational readiness. If some of the major systems are not ready, then the ships should not be available for operations. It is required to maintain a high level availability under the limited resources as it determines the strength of ROK's navy. However, it will result in inefficiencies if some ships are operated without proper maintenance only to improve their availability. Thus, this study suggests the operational scheduling for two squadron ships that considers multiple objectives such as availability, overlapping maintenance, and deviation from available ships in a particular week. We applied NSGA-II algorithm to find better solutions for more efficient scheduling. The experiment result reached an efficient solutions after 1,500 generations. Two efficient operational schedules were compared on the basis of three multiple objectives among them.

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

Optimization of Tank Model Parameters Using Multi-Objective Genetic Algorithm (I): Methodology and Model Formulation (다목적 유전자알고리즘을 이용한 Tank 모형 매개변수 최적화(I): 방법론과 모형구축)

  • Kim, Tae-Soon;Jung, Il-Won;Koo, Bo-Young;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.9
    • /
    • pp.677-685
    • /
    • 2007
  • The objective of this study is to evaluate the applicability of multi-objective genetic algorithm(MOGA) in order to calibrate the parameters of conceptual rainfall-runoff model, Tank model. NSGA-II, one of the most imitating MOGA implementations, is combined with Tank model and four multi-objective functions such as to minimize volume error, root mean square error (RMSE), high flow RMSE, and low flow RMSE are used. When NSGA-II is employed with more than three multi-objective functions, a number of Pareto-optimal solutions usually becomes too large. Therefore, selecting several preferred Pareto-optimal solutions is essential for stakeholder, and preference-ordering approach is used in this study for the sake of getting the best preferred Pareto-optimal solutions. Sensitivity analysis is performed to examine the effect of initial genetic parameters, which are generation number and Population size, to the performance of NSGA-II for searching the proper paramters for Tank model, and the result suggests that the generation number is 900 and the population size is 1000 for this study.

GBNSGA Optimization Algorithm for Multi-mode Cognitive Radio Communication Systems (다중모드 Cognitive Radio 통신 시스템을 위한 GBNSGA 최적화 알고리즘)

  • Park, Jun-Su;Park, Soon-Kyu;Kim, Jin-Up;Kim, Hyung-Jung;Lee, Won-Cheol
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.314-322
    • /
    • 2007
  • This paper proposes a new optimization algorithm named by GBNSGA(Goal-Pareto Based Non-dominated Sorting Genetic Algorithm) which determines the best configuration for CR(Cognitive Radio) communication systems. Conventionally, in order to select the proper radio configuration, genetic algorithm has been introduced so as to alleviate computational burden along the execution of the cognition cycle proposed by Mitola. This paper proposes a novel optimization algorithm designated as GBNSGA for cognitive engine which can be described as a hybrid algorithm combining well-known Pareto-based NSGA(Non-dominated Sorting Genetic Algorithm) as well as GP(Goal Programming). By conducting computer simulations, it will be verified that the proposed method not only satisfies the user's service requirements in the form of goals. It reveals the fast optimization capability and more various solutions rather than conventional NSGA or weighted-sum approach.

Multiobjective optimization strategy based on kriging metamodel and its application to design of axial piston pumps (크리깅 메타모델에 기반한 다목적최적설계 전략과 액셜 피스톤 펌프 설계에의 응용)

  • Jeong, Jong Hyun;Baek, Seok Heum;Suh, Yong Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.893-904
    • /
    • 2013
  • In this paper, a Kriging metamodel-based multi-objective optimization strategy in conjunction with an NSGA-II(non-dominated sorted genetic algorithm-II) has been employed to optimize the valve-plate shape of the axial piston pump utilizing 3D CFD simulations. The optimization process for minimum pressure ripple and maximum pump efficiency is composed of two steps; (1) CFD simulation of the piston pump operation with various combination of six parameters selected based on the optimization principle, and (2) applying a multi-objective optimization approach based on the NSGA-II using the CFD data set to evaluate the Pareto front. Our exploration shows that we can choose an optimal trade-off solution combination to reach a target efficiency of the axial piston pump with minimum pressure ripple.