• Title/Summary/Keyword: NS-1619

Search Result 6, Processing Time 0.019 seconds

The Ca2+-activated K+ (BK) Channel-opener NS 1619 Prevents Hydrogen Peroxide-induced Cell Death and Mitochondrial Dysfunction in Retinal Pigment Epithelial Cells (망막 색소상피세포에서 산화성 세포 손상과 미토콘드리아기능 저해에 미치는 NS 1619의 보호 효과)

  • Kang, Jae Hoon;Woo, Jae Suk
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1349-1356
    • /
    • 2017
  • Potassium channel openers (KCOs) produce physiological and pharmacological defense mechanisms against cell injuries caused by oxidative stress of diverse origins. Openings of mitochondrial and plasmalemmal $K^+$ channels are involved in the defense mechanisms. This study tested whether NS 1619, an opener of large-conductance BK channels, has a similar beneficial influence on the pigment epithelial cells of retinas. The human retinal pigment epithelial cell line ARPE-19 was exposed to $H_2O_2$-induced oxidative stress in the absence and presence of NS 1619. The degrees of the cells' injuries were assessed by analyzing the cells' trypan-blue exclusion abilities and TUNEL staining. NS 1619 produced remarkable protections against cell injuries caused by $H_2O_2$. It prevented apoptotic and necrotic cell deaths. The protective effect of NS 1619 was significantly diminished when the cells were treated with NS 1619 in combination with the BK channel-blocker paxilline. NS 1619 significantly ameliorated cellular ATP deprivations in $H_2O_2$-treated cells. It helped mitochondria preserve their functional integrity, which was estimated by their MTT reduction abilities and mitochondrial membrane potential. In conclusion, it was suggested that NS 1619 had a beneficial effect on mitochondria in regards to preserving their functional integrity under oxidative stress, and it produces defense mechanisms against oxidant-induced cell injuries in ARPE-19 cells.

KCl Mediates $K^+$ Channel-Activated Mitogen-Activated Protein Kinases Signaling in Wound Healing

  • Shim, Jung Hee;Lim, Jong Woo;Kim, Byeong Kyu;Park, Soo Jin;Kim, Suk Wha;Choi, Tae Hyun
    • Archives of Plastic Surgery
    • /
    • v.42 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • Background Wound healing is an interaction of a complex signaling cascade of cellular events, including inflammation, proliferation, and maturation. $K^+$ channels modulate the mitogen-activated protein kinase (MAPK) signaling pathway. Here, we investigated whether $K^+$ channel-activated MAPK signaling directs collagen synthesis and angiogenesis in wound healing. Methods The human skin fibroblast HS27 cell line was used to examine cell viability and collagen synthesis after potassium chloride (KCl) treatment by Cell Counting Kit-8 (CCK-8) and western blotting. To investigate whether $K^+$ ion channels function upstream of MAPK signaling, thus affecting collagen synthesis and angiogenesis, we examined alteration of MAPK expression after treatment with KCl (channel inhibitor), NS1619 (channel activator), or kinase inhibitors. To research the effect of KCl on angiogenesis, angiogenesis-related proteins such as thrombospondin 1 (TSP1), anti-angiogenic factor, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), pro-angiogenic factor were assayed by western blot. Results The viability of HS27 cells was not affected by 25 mM KCl. Collagen synthesis increased dependent on time and concentration of KCl exposure. The phosphorylations of MAPK proteins such as extracellular-signal-regulated kinase (ERK) and p38 increased about 2.5-3 fold in the KCl treatment cells and were inhibited by treatment of NS1619. TSP1 expression increased by 100%, bFGF expression decreased by 40%, and there is no significant differences in the VEGF level by KCl treatment, TSP1 was inhibited by NS1619 or kinase inhibitors. Conclusions Our results suggest that KCl may function as a therapeutic agent for wound healing in the skin through MAPK signaling mediated by the $K^+$ ion channel.

Intracellular calcium-dependent regulation of the sperm-specific calcium-activated potassium channel, hSlo3, by the BKCa activator LDD175

  • Wijerathne, Tharaka Darshana;Kim, Jihyun;Yang, Dongki;Lee, Kyu Pil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.241-249
    • /
    • 2017
  • Plasma membrane hyperpolarization associated with activation of $Ca^{2+}$-activated $K^+$ channels plays an important role in sperm capacitation during fertilization. Although Slo3 (slowpoke homologue 3), together with the auxiliary ${\gamma}^2$-subunit, LRRC52 (leucine-rich-repeat-containing 52), is known to mediate the pH-sensitive, sperm-specific $K^+$ current KSper in mice, the molecular identity of this channel in human sperm remains controversial. In this study, we tested the classical $BK_{Ca}$ activators, NS1619 and LDD175, on human Slo3, heterologously expressed in HEK293 cells together with its functional interacting ${\gamma}^2$ subunit, hLRRC52. As previously reported, Slo3 $K^+$ current was unaffected by iberiotoxin or 4-aminopyridine, but was inhibited by ~50% by 20 mM TEA. Extracellular alkalinization potentiated hSlo3 $K^+$ current, and internal alkalinization and $Ca^{2+}$ elevation induced a leftward shift its activation voltage. NS1619, which acts intracellularly to modulate hSlo1 gating, attenuated hSlo3 $K^+$ currents, whereas LDD175 increased this current and induced membrane potential hyperpolarization. LDD175-induced potentiation was not associated with a change in the half-activation voltage at different intracellular pHs (pH 7.3 and pH 8.0) in the absence of intracellular $Ca^{2+}$. In contrast, elevation of intracellular $Ca^{2+}$ dramatically enhanced the LDD175-induced leftward shift in the half-activation potential of hSlo3. Therefore, the mechanism of action does not involve pH-dependent modulation of hSlo3 gating; instead, LDD175 may modulate $Ca^{2+}$-dependent activation of hSlo3. Thus, LDD175 potentially activates native KSper and may induce membrane hyperpolarization-associated hyperactivation in human sperm.

Effects of Pharmacological Modulators of $Ca^{2+}-activated\;K^+$ Channels on Proliferation of Human Dermal Fibroblast

  • Yun, Ji-Hyun;Kim, Tae-Ho;Myung, Soon-Chul;Bang, Hyo-Weon;Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Employing electrophysiological and cell proliferation assay techniques, we studied the effects of $Ca^{2+}$ -activated $K^+$ channel modulators on the proliferation of human dermal fibroblasts, which is important in wound healing. Macroscopic voltage-dependent outward $K^+$ currents were found at about -40 mV stepped from a holding potential of -70 mV. The amplitude of $K^+$ current was increased by NS1619, a specific large-conductance $Ca^{2+}$-activated $K^+$ (BK) channel activator, but decreased by iberiotoxin (IBTX), a specific BK channel inhibitor. To investigate the presence of an intermediate-conductance $Ca^{2+}$-activated $K^+$ (IK) channels, we pretreated the fibroblasts with low dose of TEA to block BK currents, and added 1-EBIO (an IK activator). 1-EBIO recovered the currents inhibited by TEA. When various $Ca^{2+}$-activated $K^+$ channel modulators were added into culture media for 1∼3 days, NS1619 or 1-EBIO inhibited the cell proliferation. On the other hand, IBTX, clotrimazole or apamin, a small conductance $Ca^{2+}$-activated $K^+$ channel (SK) inhibitor, increased it. These results suggest that BK, IK, and SK channels might be involved in the proliferation of human dermal fibroblasts, which is inversely related to the channel activation.

Mechanical Hyperalgesia Induced by Blocking Calcium-activated Potassium Channels on Capsaicin-sensitive Afferent Fiber

  • Lee, Kyung-Hee;Shin, Hong-Kee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.5
    • /
    • pp.215-219
    • /
    • 2007
  • Small and large conductance $Ca^{2+}$-activated $K^+(SK_{Ca}\;and\;BK_{Ca})$ channels are implicated in the modulation of neuronal excitability. We investigated how changes in peripheral $K_{Ca}$ channel activity affect mechanical sensitivity as well as the afferent fiber type responsible for $K_{Ca}$ channel-induced mechanical sensitivity. Blockade of $SK_{Ca}$ and $BK_{Ca}$ channels induced a sustained decrease of mechanical threshold which was significantly attenuated by topical application of capsaicin onto afferent fiber and intraplantar injection of 1-ethyl-2-benzimidazolinone. NS1619 selectively attenuated the decrease of mechanical threshold induced by charybdotoxin, but not by apamin. Spontaneous flinching and paw thickness were not significantly different after $K_{Ca}$ channel blockade. These results suggest that mechanical sensitivity can be modulated by $K_{Ca}$ channels on capsaicin-sensitive afferent fibers.

Effects of $K^+$ Channel Modulators on Extracellular $K^+$ Accumulation during Ischemia in the Rat Hippocampal Slice (해마절편의 허혈성 $K^+$ 축적에 대한 $K^+$채널 조절 약물의 작용)

  • Choi, Jin-Kyu;Chun, Boe-Gwun;Ryu, Pan-Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.681-690
    • /
    • 1997
  • Loss of synaptic transmission and accumulation of extracellular $K^+([K^+]_O)$ are the key features in ischemic brain damage. Here, we examined the effects of several $K^+$channel modulators on the early ischemic changes in population spike (PS) and $[K^+]_o$ in the CA1 pyramidal layer of the rat hippocampal slice using electrophysiological techniques. After onset of anoxic aglycemia (AA), orthodromic field potentials decreased and disappeared in $3.3{\pm}0.22\;min$ $(mean{\pm}SEM,\;n=40)$. The hypoxic injury potential (HIP), a transient recovery of PS appeared at $6.0{\pm}0.25\;min$ (n=40) in most slices during AA and lasted for $3.3{\pm}0.43\;min$. $[K^+]_o$ increased initially at a rate of 0.43 mM/min (Phase 1) and later at a much faster rate (12.45 mM/min, Phase 2). The beginning of Phase 2 was invariably coincided with the disappearance of HIP. Among $K^+$ channel modulators tested such as 4-aminopyridine (0.03, 0.3 mM), tetraethylammonium (0.1 mM), NS1619 $(0.3{\sim}10\;{\mu}M)$, niflumic acid (0.1 mM), glibenclamide $(40\;{\mu}M)$, tolbutamide $(300\;{\mu}M)$ and pinacidil $(100\;{\mu}M)$, only 4-aminopyridine (0.3 mM) induced slight increase of $[K^+]_o$ during Phase 1. However, none of the above agents modulated the pattern of Phase 2 in $[K^+]_o$ in response to AA. Taken together, the experimental data suggest that 4-aminopyridine-sensitive $K^+$channels, large conductance $Ca^{2+}-activated$ $K^+$ channels and ATP-sensitive $K^+$ channels may not be the major contributors to the sudden increase of $[K^+]_o$ during the early stage of brain ischemia, suggesting the presence of other routes of $K^+$ efflux during brain ischemia.

  • PDF