• Title/Summary/Keyword: NREL Phase VI

Search Result 30, Processing Time 0.023 seconds

Wind Tunnel Test for Scaled Wind Turbine Model (Scale effect correction) (풍력터빈 축소모델 풍동시험 : 축소효과 보상기법)

  • Cho, Tae-Hwan;Kim, Yang-Won;Park, Young-Min;Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.282-285
    • /
    • 2008
  • NREL Phase VI 12% 축소모델을 사용한 표준풍력터빈 풍동시험은 2006$\sim$2007년에 수행되었다. 1,2차 풍동시험은 복합재 및 알루미늄 블레이드를 사용하여 블레이드 제작정밀도 및 표면상태에 의한 영향을 파악하기 위해 수행되었다. 3차 풍동시험은 축소효과보상기법 개발을 위해 수행되었다. Bo-105 40% 모델에 사용된 코드확장기법을 적용하여 15% 코드확장 블레이드를 사용하여 풍동시험을 수행하였다. 시험결과 코드확장기법을 적용할 경우 풍속에 대한 토크 기울기는 실물모델과 잘 일치하나, 최대토크 대비 8%정도 간극을 나타내고 있다. 풍력터빈 블레이드와 같이 캠버가 큰 익형을 사용하는 회전체에 대한 수정된 보상기법을 적용할 경우 이러한 간극은 보상될 수 있다.

  • PDF

Scaled effect correction method for the wind turbine blade with multi airfoils (다수의 익형이 적용된 풍력터빈 블레이드에 대한 축소효과 보상기법)

  • Jo, Tae-Hwan;Kim, Cheol-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.494-497
    • /
    • 2009
  • 풍력터빈 블레이드 풍동시험의 경우 사용가능한 시험설비의 크기제한으로 인해 축소모델 사용이 불가피하며, 이로 인해 풍동시험에서는 실물 블레이드에 비해 10% 미만의 낮은 Re수에서 시험이 수행된다. 축소모델 블레이드 풍동시험 결과를 활용하여 실물 블레이드의 성능(토크)를 추정하기 위한 축소효과 보정기법을 2008년 제시하였으며, NREL Phase VI 모델 시험결과에 적용하였다. 당시 제시된 보정기법은 단일익형을 전체 블레이드에 사용한 사례이며 축소효과 보정을 위해 Re수에 따른 익형의 양력계수 변화만을 적용하였다. 본 논문에서는 당시 제안된 축소효과 보정기법을 익형의 양력계수 및 항력계수를 포함한 형태로 수정하였으며, 블레이드에 다수의 익형이 사용되었을 경우에 대해 확장하였다. NREL Phase VI 12% 시험모델의 경우 익형의 양력계수 기울기에 의한 보정량은 약 15% 정도이며, 항력계수 변화에 의한 보정량은 약 5% 정도로 나타났다. 블레이드에 다수의 익형이 사용되었을 경우 설계 또는 전산해석을 통해 구한 반경별 토크 함수를 적용하여 블레이드 축소효과를 보정할 수 있다.

  • PDF

A Study on the Evaluation of Structural Properties of Wind Turbine Blade-Part1 (풍력터빈의 구조특성 평가에 관한 연구-Part1)

  • Lee, Kyoung-Soo;Huque, Ziaul;Kommalapati, Raghava;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.47-54
    • /
    • 2014
  • This paper presents the structural model development and verification processes of wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine which the wind tunnel and structural test data has publicly available is used for the study. The wind turbine assembled by blades, rotor, nacelle and tower. The wind blade connected to rotor. To make the whole turbine structural model, the mass and stiffness properties of all parts should be clear and given. However the wind blade, hub, nacelle, rotor and power generating machinery parts have difficulties to define the material properties because of the composite and assembling nature of that. Nowadays to increase the power generating coefficient and cost efficiency, the highly accurate aerodynamic loading evaluating technique should be developed. The Fluid-Structure Interaction (FSI) is the emerging new way to evaluate the aerodynamic force on the rotating wind blade. To perform the FSI analysis, the fluid and structural model which are sharing the associated interface topology have to be provided. In this paper, the structural model of blade development and verifying processes have been explained for Part1. In following Part2 paper, the processes of whole turbine system will be discussing.

A Study on the y+ Effects on Turbulence Model of Unstructured Grid for CFD Analysis of Wind Turbine (풍력터빈 전산유체역학해석에서 비균일 그리드 무차원 연직거리의 난류모델에 대한 영향특성)

  • Lee, Kyoung-Soo;Ziaul, Huque;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • This paper presents the dimensionless wall distance, y+ effect on SST turbulent model for wind turbine blade. The National Renewable Energy Laboratory (NREL) Phase VI wind turbine was used for the study, which the wind tunnel and structural test data has publicly available. The near wall treatment and turbulent characteristics have important role for proper CFD simulation. Most of the CFD development in this area is focused on advanced turbulence model closures including second moment closure models, and so called Low-Reynolds (low-Re) number and two-layer turbulence models. However, in many cases CFD aerodynamic predictions based on these standard models still show a large degree of uncertainty, which can be attributed to the use of the $\epsilon$-equation as the turbulence scale equation and the associated limitations of the near wall treatment. The present paper demonstrates the y+ definition effect on SST (Shear Stress Transport) turbulent model with advanced automatic near wall treatment model and Gamma theta transitional model for transition from lamina to turbulent flow using commercial ANSYS-CFX. In all cases the SST model shows to be superior, as it gives more accurate predictions and is less sensitive to grid variations.

Aerodynamic Analysis of Horizontal Axis Wind Turbines using Nonlinear Bound Vortex Correction Method (비선형 구속 와류 보정법을 이용한 수평축 풍력 발전기의 공력 해석)

  • Kim, Ho-Geon;Lee, Seung-Min;Lee, Soo-Gab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.307-310
    • /
    • 2008
  • Nonlinear Vortex Strength Correction Method is developed for improvement of vortex lattice method which can't calculate the separated flow conditions and the viscous effect. In this method, the vortex strength on the blade surface is determined by matching the lift force from vortex lattice method with the lift force from aerodynamic coefficients table as the same circulation is added to or subtracted from all chord wise vortices. For considering the nonlinearities due to the neighboring blade sections, sophisticated Newton-Rapson algorithm is applied. The validation of this method was done by comparing the simulations with the measurements on the NREL Phase-VI horizontal axis wind turbine(HAWT) in the NASA Ames wind tunnel under uniform conditions. This method gives good agreements with experiments in most cases.

  • PDF

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park, Young-Min;Chang, Byeong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.269-272
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using computational fluid dynamics. For the numerical analysis of wind turbine. Three dimensional Navier-Stokes solver with various turbulence models was tested and realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with experiment and blind test data. Using the present method, numerical simulations for various size of wind tunnel model were carried out and characteristics were observed in detail. The power loss due to the interference between wind turbine and nacelle was also computed for relatively larger nacelle installation in wind tunnel test. The present results showed good correlations with experimental data and reasonable trends of scale effect of wind turbine.

  • PDF

Numerical Study of Rotor-Tower Interaction for Horizontal Axis Wind Turbine (수평축 풍력터빈의 로터-타워 공력 간섭현상에 대한 수치적 연구)

  • Kim, Jae-Won;Yu, Dong-Ok;Kwon, Oh-Joon
    • Journal of Wind Energy
    • /
    • v.2 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • In the present study, numerical unsteady simulations of the NREL Phase VI wind turbine in downwind operation conditions were conducted to investigate rotor-tower interaction. The calculations were performed using an unstructured mesh, incompressible Reynolds-averaged Navier-Stokes flow solver. To capture the unsteady effects associated with the tower shadow between the rotor blades and the tower, the wind turbine was modelled including the rotor, tower, hub, and nacelle. The present results generally showed good agreements with available experimental data. At the lowest wind speed, the pressure distribution was characterized by a complete collapse of the suction peak on the blade when the blade passes through the tower wake. It was found that unsteady effects play a significant role in the response of the blades.

ROTATING FLOW ANALYSIS AROUND A HAWT ROTOR BLADE USING RANS EQUATIONS (RANS 방정식을 이용한 HAWT 로터 블레이드의 회전 유동장 해석)

  • Kim, T.S.;Lee, C.;Son, C.H.;Joh, C.Y.
    • Journal of computational fluids engineering
    • /
    • v.13 no.2
    • /
    • pp.55-61
    • /
    • 2008
  • The Reynolds-Averaged Navier-Stokes(RANS) analysis of the 3-D steady flow around the NREL Phase VI horizontal axis wind turbine(HAWT) rotor was performed. The CFD analysis results were compared with experimental data at several different wind speeds. The present CFD model shows good agreements with the experiments both at low wind speed which formed well-attache flow mostly on the upper surface of the blade, and at high wind speed which blade surface flow completely separated. However, some discrepancy occurs at the relatively high wind speeds where mixed attached and separated flow formed on the suction surface of the blade. It seems that the discrepancy is related to the onset of stall phenomena and consequently separation prediction capability of the current turbulence model. It is also found that strong span-wise flow occurs in stalled area due to the centrifugal force generated by rotation of the turbine rotor and it prevents abrupt reduction of normal force for higher wind speed than the designed value.

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park Young-Min;Chang Byeong-Hee
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.28-36
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using commercial CFD code, Fluent. For the numerical analysis of wind turbine, the three dimensional Navier-Stokes solver with various turbulence models was tested. As a turbulence mode, the realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with its wind tunnel test and blind test data. Using the present method, numerical simulations for various size of wind tunnel models were carried out and characteristics were analyzed in detail. For wind tunnel test model, the size of nacelle may not be scaled down precisely because of available motor. The effect of nacelle size was also computed and analyzed though CFD simulation. The present results showed the good correlations in pre-stall region but much to be improved in post-stall region. In 2006 and 2007, the performance and the scale effect of standard wind turbine model will be tested in KARI(Korea Aerospace Research Institute) LSWT(Low Speed Wind Tunnel) and the present results will be validated with the wind tunnel data.

  • PDF

Aerodynamic Analysis of HAWTs in Yaw Conditions using Nonlinear Vortex Correction Method (비선형 와류 보정 기법을 이용한 풍력 블레이드의 요에러시 공력 해석)

  • Kim, Hogeon;Lee, Soogab
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.61.1-61.1
    • /
    • 2011
  • 풍력 터빈은 복잡한 바람 조건에 노출되어 운용 되는 시스템으로서 경제성과 신뢰성을 확보하기 위해서는 이러한 조건하에서 시스템에 작용하는 정확한 공력 하중 예측이 필요하다. 여러 조건 중에서도 요에러는 풍향이 수시로 바뀌기 때문에 피할 수 없는 비정상 유동 중에 하나이다. 본 연구에서는 이러한 요에러 발생시 공력 하중예측을 적절히 예측하기 위해서 와류 격자 기법을 기반으로 하는 비선형 와류 보정기법을 적용하였다. 비선형 와류 보정기법은 실속 이후의 공력 예측을 위해 기지의 공력 테이블을 이용하는 방법으로서 실속 이후의 공력 테이블 값의 양력과 와류 격자 기법에서의 양력 값이 일치하도록 순환(circulation)을 분포시키는 기법이다. 또한 요에러시에 발생할 수 있는 동적 실속을 계산하기 위해 Beddoes-Leishmen 동적 실속 모델을 비선형 와류 보정 기법에 적용하는 연구를 수행하였다. 요에러시 공력 하중 예측에 관한 수치해석 기법 연구의 적절성을 알아보기 위해 NREL-Phase VI Rotor 실험 결과와 비교 하였다. 그 결과 기존의 여타의 기법들과 비교하여 본 연구에서 제안한 기법의 적절성을 확인 할 수 있었다. 앞으로 본 연구를 바탕으로 다양한 비정상 공력 조건에 대한 풍력 블레이드의 공력 하중 해석에 대해 수행할 계획이다.

  • PDF