• 제목/요약/키워드: NRCS-CN method

검색결과 34건 처리시간 0.033초

논문 - GIS기반의 미계측 유역 설계홍수량 산정 (GIS-Based Design Flood Estimation of Ungauged Watershed)

  • 홍성민;정인균;박종윤;이미선;김성준
    • 한국관개배수논문집
    • /
    • 제18권2호
    • /
    • pp.87-100
    • /
    • 2011
  • This study is to delineate the watershed hydrological parameters such as area, slope, rain gauge weight, NRCS-CN and time of concentration (Tc) by using the Geographic Information Sytem (GIS) technique, and estimation of design flood for an ungauged watershed. Especially, we attempted to determine the Tc of ungauged watershed and develop simple program using the cell-based algorithm to calculates upstream or downstream flow time along a flow path for each cell. For a $19km^2$ watershed of tributary of Nakdong river (Seupmoon), the parameters including flow direction, flow accumulation, watershed boundary, stream network and Tc map were extracted from 30m Agreeburn DEM (Digital Elevation Model) and landcover map. And NRCS-CN was extracted from 30m landcover map and soil map. Design rainfall estimation for two rainfall gauge which are Sunsan and Jangcheon using FARD2006 that developed by National Institute for Disaster Prevention (NIDP). Using the parameters as input data of HEC-l model, the design flood was estimated by applying Clark unit hydrograph method. The results showed that the design flood of 50 year frequency of this study was $8m^3/sec$ less than that of the previous fundamental plan in 1994. The value difference came from the different application of watershed parameter, different rainfall distribution (Huff quartile vs. Mononobe) and critical durations. We could infer that the GIS-based parameter preparation is more reasonable than the previous hand-made extraction of watershed parameters.

  • PDF

도시 물 순환 건전성을 위한 유수지와 침투기반 저류지의 복합설계기법 (An Hybrid Approach for Designing Detention and Infiltration-based Retentions to Promote Sound Urban Hydrologic Cycle)

  • 최치현;최대규;이재관;김상단
    • 대한환경공학회지
    • /
    • 제33권1호
    • /
    • pp.1-8
    • /
    • 2011
  • 본 연구는 도시환경개선계획의 일환으로서 강우유출수 제어설비의 크기 결정과 관련된 복합 설계기법을 제안하고 있다. 제안된 복합설계기법의 목적은 도시 개발이전의 수문순환상태를 복원시키는 것에 있다. 먼저, 연속적인 강우기록으로부터 개개의 강우사상을 분리하기 위해 IETD를 결정한다. 그 다음에 NRCS-CN 방법을 적용하여 모든 강우사상에 대한 직접유출량과 침투량을 산정한다. 직접유출량과 침투량의 장기간 통계치는 개발이전, 개발이후, 개발이후 유수지 설계, 그리고 개발이후 제안된 복합설계의 경우에 대하여 각각 분석된다. 개발이전의 직접유출량과 침투량을 재현하기 위해서 유전자 알고리즘을 적용하여 유수지 및 침투기반 저류지의 크기가 산정된다. 제안된 복합설계기법은 자연 상태의 직접유출량과 침투량의 통계치를 재현하는데 매우 효과적인 것이 보여진다.

경사도에 따른 CN보정에 의한 L-THIA 직접유출 모의 영향 평가 (The Effect of Slope-based Curve Number Adjustment on Direct Runoff Estimation by L-THIA)

  • 김종건;임경재;박윤식;허성구;박준호;안재훈;김기성;최중대
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.897-905
    • /
    • 2007
  • Approximately 70% of Korea is composed of forest areas. Especially 48% of agricultural field is practiced at highland areas over 400 m in elevation in Kangwon province. Over 90% of highland agricultural farming is located at Kangwon province. Runoff characteristics at the mountainous area such as Kangwon province are largely affected by steep slopes, thus runoff estimation considering field slopes needs to be utilized for accurate estimation of direct runoff. Although many methods for runoff estimation are available, the Soil Conservation Service (SCS), now Natural Resource Conservation Service (NRCS), Curve Number (CN)-based method is used in this study. The CN values were obtained from many plot-years dataset obtained from mid-west areas of the United States, where most of the areas have less than 5% in slopes. Thus, the CN method is not suitable for accurate runoff estimation where significant areas are over 5% in slopes. Therefore, the CN values were adjusted based on the average slopes (25.8% at Doam-dam watershed) depending on the 5-day Antecedent Moisture Condition (AMC). In this study, the CN-based Long-Term Hydrologic Impact Assessment (L-THIA) direct runoff estimation model used and the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separation from the stream flow data. The $R^2$ value was 0.65 and the Nash-Sutcliffe coefficient value was 0.60 when no slope adjustment was made in CN method. However, the $R^2$ value was 0.69 and the Nash-Sutcliffe value was 0.69 with slope adjustment. As shown in this study, it is strongly recommended the slope adjustment in the CN direct runoff estimation should be made for accurate direct runoff prediction using the CN-based L-THIA model when applied to steep mountainous areas.

수문모니터링과 물수지법을 이용한 농업용 저수지 유역 유출곡선번호 추정 (Estimation of Runoff Curve Number for Agricultural Reservoir Watershed Using Hydrologic Monitoring and Water Balance Method)

  • 윤광식;김영주;윤석군;정재운;한국헌
    • 한국농공학회논문집
    • /
    • 제47권3호
    • /
    • pp.59-68
    • /
    • 2005
  • The rainfall-runoff potential of Jangseong reservoir watershed was studied based on SCS (Soil Conservation Service, which is now the NRCS, Natural Resources Conservation Service, USDA) runoff curve number (CN) technique. Precipitation and reservoir operation data had been collected. The rainfall-runoff pairs from the watershed for ten years was estimated using reservoir water balance analysis using reservoir operation records. The maximum retention, S, for each storm event from rainfall-runoff pair was estimated for selected storm events. The estimated S values were arranged in descending order, then its probability distribution was determined as log-normal distribution, and associated CNs were found about probability levels of Pr=0.1, 0.5, and 0.9, respectively. A subwatershed that has the similar portions of land use categories to the whole watershed of Jangseong reservoir was selected and hydrologic monitoring was conducted. CNs for subwatershed were determined using observed data. CNs determined from observed rainfall-runoff data and reservoir water balance analysis were compared to the suggested CNs by the method of SCS-NEH4. The $CN_{II}$ measured and estimated from water balance analysis in this study were 78.0 and 78.1, respectively. However, the $CN_{II}$, which was determined based on hydrologic soil group, land use, was 67.2 indicating that actual runoff potential of Jangseong reservoir watershed is higher than that evaluated by SCS-NEH4 method. The results showed that watershed runoff potential for large scale agricultural reservoirs needs to be examined for efficient management of water resources and flood prevention.

효과적인 유역관리를 위한 CN기법 기반의 침투량 산정 및 기저유출량 분석 (Estimation of CN-based Infiltration and Baseflow for Effective Watershed Management)

  • 김희원;신연주;최정헌;강현우;류지철;임경재
    • 한국물환경학회지
    • /
    • 제27권4호
    • /
    • pp.405-412
    • /
    • 2011
  • Increased Non-permeable areas which have resulted from civilization reduce the volume of groundwater infiltration that is one of the important factors causing water shortage during a dry season. Thus, seeking the efficient method to analyze the volume of groundwater in accurate should be needed to solve water shortage problems. In this study, two different watersheds were selected and precipitation, soil group, and land use were surveyed in a particular year in order to figure out the accuracy of estimated infiltration recharge ratio compared to Web-based Hydrograph Analysis Tool (WHAT). The volume of groundwater was estimated considering Antecedent soil Moisture Condition (AMC) and Curve Number (CN) using Long Term Hydrologic Impact Assessment (L-THIA) model. The results of this study showed that in the case of Kyoung-an watershed, the volume of both infiltration and baseflow seperated from WHAT was 46.99% in 2006 and 33.68% in 2007 each and in Do-am watershed the volume of both infiltration and baseflow was 33.48% in 2004 and 23.65% in 2005 respectively. L-THIA requires only simple data (i.e., land uses, soils, and precipitation) to simulate the accurate volume of groundwater. Therefore, with convenient way of L-THIA, researchers can manage watershed more effectively than doing it with other models. L-THIA has limitations that it neglects the contributions of snowfall to precipitation. So, to estimate more accurate assessment of the long term hydrological impacts including groundwater with L-THIA, further researches about snowfall data in winter should be considered.

보청천 유역의 유출곡선지수 회귀식에 관한 연구 (A Study of Curve Number Regression Equation for Bocheong Stream)

  • 곽재원;김수전;주홍준;김형수
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.576-580
    • /
    • 2010
  • NRCS의 유출곡선지수 산정법(CN; Runoff Curve Number method)은 유역내의 토지 이용 및 토지 피복, 토양특성, 수문학적 조건 등을 이용하여 총 강우량으로부터 유효 유출량을 계산하는 방법으로서 이론의 간편성과 적용성으로 인하여 여러 분야에 적용되고 있다. 그러나, 유출곡선지수의 특성상 지역적인 특성에 따라 차이가 발생할 수 밖에 없음에도 국내에서는 대부분 미국 NEH(National Engineering Handbook)에서 제시한 기준을 이용하고 있는 실정이다. 이에 대하여 본 연구에서는 국내 유역의 강우-유출 특성을 반영한 유출곡선지수를 산정하고 강우에 따른 직접 유출량을 모의하기 위한 방법을 연구하였다. 이를 위하여 보청천 유역의 관측 강우-유출 자료에 Hawkins et al(1993)등이 제시한 점근 유출곡선지수방법을 적용하고 이를 국가수자원관리종합정보시스템(WAMIS)에서 제시한 값과 비교하였다. 또한 유역의 대표 유출곡선지수에 대한 회귀식을 유도하고 이를 이용하여 보청천 유역의 하계 유출을 모의하고 그 결과를 비교 분석 하였다. 연구결과 대표 유출곡선지수식을 이용한 유역의 직접유출 모의결과가 단일 유출곡선지수시의 모의결과보다 더 우수한 결과를 나타내었다.

  • PDF

물수지 및 식생 동역학 모의를 위한 생태수문모형 개발 (Development of the Ecohydrologic Model for Simulating Water Balance and Vegetation Dynamics)

  • 최대규;최현일;김경현;김상단
    • 한국물환경학회지
    • /
    • 제28권4호
    • /
    • pp.582-594
    • /
    • 2012
  • A simple ecohydorlogic model that simulates hydrologic components and vegetation dynamics simultaneously based on equations of soil water dynamics and vegetation's growth and mortality is discussed. In order to simulate ungauged watersheds, the proposed model is calibrated with indirected estimated observation data set; 1) empirically estimated annual vaporization, 2) monthly surface runoff estimated by NRCS-CN method, and 3) vegetation fraction estimated by SPOT/VEGETATION NDVI. In order to check whether the model is performed well with indirectly estimated data or not, four upper dam watersheds (Andong, Habcheon, Namgang, Milyang) in Nakdong River watershed are selected, and the model is verified.

웹기반 홍수관리시스템 구현을 위한 홍수분석모듈개발 (Development of Flood Analysis Module for the Implementation of a Web-Based Flood Management System)

  • 정인균;박종윤;김성준;장철희
    • 한국농공학회논문집
    • /
    • 제56권6호
    • /
    • pp.103-111
    • /
    • 2014
  • This study was to develop the flood analysis module (FAM) for implementation of a web-based real-time agricultural flood management system. The FAM was developed to apply for an individual watershed, including agricultural reservoir. This module calculates the flood inflow hydrograph to the reservoir using effective rainfall by NRCS-CN method and unit hydrograph calculated by Clark, SCS, and Nakayasu synthetic unit hydrograph methods, and then perform the reservoir routing by modified Puls method. It was programmed to consider the automatic reservoir operation method (AutoROM) based on flood control water level of reservoir. For a $15.7km^2$ Gyeryong watershed including $472{\times}10^4m^3$ agricultural reservoir, rainfall loss, rainfall excess, peak inflow, total inflow, maximum discharge, and maximum water level for each duration time were compared between the FAM and HEC-HMS (applied SCS and Clark unit hydrograph methods). The FAM results showed entirely consistent for all components with simulated results by HEC-HMS. It means that the applied methods to the FAM were implemented properly.

A Study of Soil Moisture Retention Relation using Weather Radar Image Data

  • Choi, Jeongho;Han, Myoungsun;Lim, Sanghun;Kim, Donggu;Jang, Bong-joo
    • Journal of Multimedia Information System
    • /
    • 제5권4호
    • /
    • pp.235-244
    • /
    • 2018
  • Potential maximum soil moisture retention (S) is a dominant parameter in the Soil Conservation Service (SCS; now called the USDA Natural Resources Conservation Service (NRCS)) runoff Curve Number (CN) method commonly used in hydrologic modeling for event-based flood forecasting (SCS, 1985). Physically, S represents the depth [L] soil could store water through infiltration. The depth of soil moisture retention will vary depending on infiltration from previous rainfall events; an adjustment is usually made using a factor for Antecedent Moisture Conditions (AMCs). Application of the method for continuous simulation of multiple storms has typically involved updating the AMC and S. However, these studies have focused on a time step where S is allowed to vary at daily or longer time scales. While useful for hydrologic events that span multiple days, this temporal resolution is too coarse for short-term applications such as flash flood events. In this study, an approach for deriving a time-variable potential maximum soil moisture retention curve (S-curve) at hourly time-scales is presented. The methodology is applied to the Napa River basin, California. Rainfall events from 2011 to 2012 are used for estimating the event-based S. As a result, we derive an S-curve which is classified into three sections depending on the recovery rate of S for soil moisture conditions ranging from 1) dry, 2) transitional from dry to wet, and 3) wet. The first section is described as gradually increasing recovering S (0.97 mm/hr or 23.28 mm/day), the second section is described as steeply recovering S (2.11 mm/hr or 50.64 mm/day) and the third section is described as gradually decreasing recovery (0.34 mm/hr or 8.16 mm/day). Using the S-curve, we can estimate the hourly change of soil moisture content according to the time duration after rainfall cessation, which is then used to estimate direct runoff for a continuous simulation for flood forecasting.

경주 신라우물의 지하수 수문학적 연구 (Groundwater Hydrological Study of Silla Well in Gyeongju)

  • 배상근
    • 한국환경과학회지
    • /
    • 제25권1호
    • /
    • pp.99-105
    • /
    • 2016
  • In this paper, a groundwater hydrological study of the Gyeongju well during the Silla period is conducted to investigate how sufficiently the Gyeongju well supplied water demand at the time. It is assumed that the current geology and soil condition in Gyeongju remain similar to the Silla period. Also, the land use and land coverage during the Silla period is estimated based on the current land condition in Gyeongju. Precipitation during the Silla period is analyzed using precipitation data from 1984 to 2014 provided by Gyeonju weather station. Precipitation analysis is applied based on 3 different scenarios; precipitation intensity during the Silla period was Case (1) the same as, Case (2) 30% more, and Case (3) 30% less than the precipitation intensity of the last decade (2005~2014). Furthermore, to observe the use of the well in Gyeongju during droughts, the following condition(Case (4)) is also considered; ten year drought during the Silla period was the same as the ten year drought from 1984 to 2014. Available amount of groundwater development is analyzed using NRCS-CN method. The results show that the potential amount of groundwater in Gyeongju during Silla era was for Case (1) $62,825,272m^3/year$, Case (2) $93,606,567m^3/year$, Case (3) $32,277,298m^3/year$, and Case (4)$32,870,896m^3/year$. Also, it has been shown that $45,260,000m^3$ of groundwater were required to supply to all households in Gyeongju during Silla era. Therefore, if the precipitation intensity during Silla era was similar with the last decade, the groundwater would provide enough supply to all households in Gyeongju. However, in the case that the precipitation intensity during Silla era was 30% less than the last decade or a ten year drought happened, it is predicted that the water use in Gyeongju would have been limited.