• Title/Summary/Keyword: NR3C2 gene

Search Result 13, Processing Time 0.023 seconds

Pseudohypoaldosteronism Type 1 with a Novel Mutation in the NR3C2 Gene: A Case Report

  • Kim, Young Min;Choi, In Su;Cheong, Hae Il;Kim, Chan Jong;Yang, Eun Mi
    • Childhood Kidney Diseases
    • /
    • v.24 no.1
    • /
    • pp.58-61
    • /
    • 2020
  • Pseudohypoaldosteronism type 1 (PHA1) is a rare salt-wasting disorder caused by resistance to mineralocorticoid action. PHA1 is of two types with different levels of disease severity and phenotype as follows: systemic type with an autosomal recessive inheritance (caused by mutations of the epithelial sodium channel) and renal type with an autosomal dominant inheritance (caused by mutations in the mineralocorticoid receptor). The clinical manifestations of PHA1 vary widely; however, PHA1 commonly involves hyponatremia, hyperkalemia, metabolic acidosis and elevated levels of renin and aldosterone. The earliest signs of both type of PAH1 also comprise insufficiency weight gain due to chronic dehydration and failure to thrive during infancy. Here, we report a case of renal PAH1 in a 28-day-old male infant harboring a novel heterozygous mutation in NR3C2 gene (c.1341_1345dupAAACC in exon 2), showing only failure to thrive without the characteristic of dehydration.

NR3C1 Polymorphisms for Genetic Susceptibility to Schizophrenia

  • Park, Joo Seok;Lee, Sang Min;Kim, Jong Woo;Kang, Won Sub
    • Korean Journal of Biological Psychiatry
    • /
    • v.26 no.2
    • /
    • pp.88-93
    • /
    • 2019
  • Objectives Psychological stress has been known to increase the risk of schizophrenia. Because stress responses are mainly mediated by cortisol, the action of the glucocorticoid receptors (Nuclear Receptor Subfamily 3 Group C Member 1, NR3C1) is possibly related to the pathogenesis of schizophrenia. In this study, we investigated the associations between polymorphisms of NR3C1 and schizophrenia. Methods Four single nucleotide polymorphisms (SNPs) (rs17100236, rs2963155, rs9324924, and rs7701443) of NR3C1 were genotyped in 208 patients with schizophrenia and 339 healthy individuals. A chi-square test was performed to test differences in allele distributions among groups. A multiple logistic regression model was used to calculate odds ratios (ORs) and 95% confidence intervals (CIs), and multiple inheritance models to analyze the associations between schizophrenia and SNPs (the dominant, recessive and additive models). Results The minor allele frequencies of two SNPs were significantly higher in the schizophrenia group than in those of the control group (rs2963155 G > A : 0.25 vs. 0.18, p = 0.0066 ; rs7701443 A > G : 0.40 vs. 0.33, p = 0.012). The genotype frequencies of two SNPs were found to be significantly different between patients with schizophrenia and controls in the dominant model (rs2963155 : AG/GG vs. AA, OR = 1.66, 95% CI = 1.16-2.38, p = 0.0055, rs7701443 : AG/AA vs. GG, OR = 1.61, 95% CI = 1.11-2.34, p = 0.01) and the log-additive model (rs2963155 : AG vs. GG vs. AA, OR = 1.54, 95% CI = 1.13-2.10, p = 0.0067). Conclusions This study showed significant associations between NR3C1 polymorphisms and schizophrenia. It suggests that NR3C1 may play a role in the pathogenesis of schizophrenia.

A case of pseudohypoaldosteronism type 1 with a mutation in the mineralocorticoid receptor gene

  • Lee, Se-Eun;Jung, Yun-Hye;Han, Kyoung-Hee;Lee, Hyun-Kyung;Kang, Hee-Gyung;Ha, Il-Soo;Choi, Yong;Cheong, Hae-Il
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.2
    • /
    • pp.90-93
    • /
    • 2011
  • Pseudohypoaldosteronism type 1 (PHA1) is a rare form of mineralocorticoid resistance characterized in newborns by salt wasting with dehydration, hyperkalemia and failure to thrive. This disease is heterogeneous in etiology and includes autosomal dominant PHA1 owing to mutations of the NR3C2 gene encoding the mineralocorticoid receptor, autosomal recessive PHA1 due to mutations of the epithelial sodium channel (ENaC) gene, and secondary PHA1 associated with urinary tract diseases. Amongst these diseases, autosomal dominant PHA1 shows has manifestations restricted to renal tubules including a mild salt loss during infancy and that shows a gradual improvement with advancing age. Here, we report a neonatal case of PHA1 with a NR3C2 gene mutation (a heterozygous c.2146_2147insG in exon 5), in which the patient showed failure to thrive, hyponatremia, hyperkalemia, and elevated plasma renin and aldosterone levels. This is the first case of pseudohypoaldosteronism type 1 confirmed by genetic analysis in Korea.

Polymorphisms of the NR3C1 gene in Korean children with nephrotic syndrome (한국 신증후군 환아에서 NR3C1 유전자 다형성 분석)

  • Cho, Hee Yeon;Choi, Hyun Jin;Lee, So Hee;Lee, Hyun Kyung;Kang, Hee Kyung;Ha, Il Soo;Choi, Yong;Cheong, Hae Il
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.11
    • /
    • pp.1260-1266
    • /
    • 2009
  • Purpose : Idiopathic nephrotic syndrome (NS) can be clinically classified as steroid-sensitive and steroid-resistant. The detailed mechanism of glucocorticoid action in NS is currently unknown. Methods : In this study, we investigated 3 known single nucleotide polymorphisms (SNPs) (ER22/23EK, N363S, and BclI) of the glucocorticoid receptor gene (the NR3C1 gene) in 190 children with NS using polymerase chain reaction-restriction fragment length polymorphism and analyzed the correlation between the genotypes and clinicopathologic features of the patients. Results : Eighty patients (42.1%) were initial steroid nonresponders, of which 31 (16.3% of the total) developed end-stage renal disease during follow-up. Renal biopsy findings of 133 patients were available, of which 36 (31.9%) showed minimal changes in NS and 77 (68.1%) had focal segmental glomerulosclerosis. The distribution of the BclI genotypes was comparable between the patient and control groups, and the G allele frequencies in both the groups were almost the same. The ER22/23EK and N363S genotypes were homogenous as ER/ER and NN, respectively, in all the patients and in 100 control subjects. The BclI genotype showed no correlation with the NS onset age, initial steroid responsiveness, renal pathologic findings, or progression to end-stage renal disease. Conclusion : These data suggested that the ER22/23EK, N363S, and BclI SNPs in the NR3C1 gene do not affect the development of NS, initial steroid responsiveness, renal pathologic lesion, and progression to end-stage renal disease in Korean children with NS.

DNA Microarray Analysis of Methylprednisolone Inducible Genes in the PC12 Cells

  • Choi, Woo-Jin;Choi, Seung-Won;Kim, Seon-Hwan;Kim, Youn;Kwon, O-Yu
    • Biomedical Science Letters
    • /
    • v.15 no.3
    • /
    • pp.261-263
    • /
    • 2009
  • Methylprednisolone is a synthetic glucocorticoid which is usually taken intravenously for many neurosurgical diseases which cause edema including brain tumor, and trauma including spinal cord injury. Methylprednisolone reduces swelling and decreases the body's immune response. It is also used to treat many immune and allergic disorders, such as arthritis, lupus, psoriasis, asthma, ulcerative colitis, and Crohn's disease. To identify genes expressed during methylprednisolone treatment against neurons of rats (PC12 cells), DNA microarray method was used. We have isolated 2 gene groups (up- or down-regulated genes) which are methylprednisolone differentially expressed in neurons. Lipocalin 3 is the gene most significantly increased among 772 up-regulated genes (more than 2 fold over-expression) and Aristaless 3 is the gene most dramatically decreased among 959 down-regulated genes (more than 2 fold down-expression). The gene increased expression of Fgb, Thbd, Cfi, F3, Kngl, Serpinel, C3, Tnfrsf4 and Il8rb are involved stress-response gene, and Nfkbia, Casp7, Pik3rl, I11b, Unc5a, Tgfb2, Kitl and Fgf15 are strongly associated with development. Cell cycle associated genes (Mcm6, Ccnb2, Plk1, Ccnd1, E2f1, Cdc2a, Tgfa, Dusp6, Id3) and cell proliferation associated genes (Ccl2, Tnfsf13, Csf2, Kit, Pim1, Nr3c1, Chrm4, Fosl1, Spp1) are down-regulated more than 2 times by methylprednisolone treatment. Among the genes described above, 4 up-regulated genes are confirmed those expression by RT-PCR. We found that methylprednisolone is related to expression of many genes associated with stress response, development, cell cycle, and cell proliferation by DNA microarray analysis. However, We think further experimental molecular studies will be needed to figure out the exact biological function of various genes described above and the physiological change of neuronal cells by methylprednisolone. The resulting data will give the one of the good clues for understanding of methylprednisolone under molecular level in the neurons.

  • PDF

Effect of stocker management program on beef cattle skeletal muscle growth characteristics, satellite cell activity, and paracrine signaling impact on preadipocyte differentiation

  • Vaughn, Mathew A.;Lancaster, Phillip A.;Roden, Kelly C.;Sharman, Evin D.;Krehbiel, Clinton R.;Horn, Gerald W.;Starkey, Jessica D.
    • Journal of Animal Science and Technology
    • /
    • v.61 no.5
    • /
    • pp.260-271
    • /
    • 2019
  • The objective of this study was to determine the effect of different stocker management programs on skeletal muscle development and growth characteristics, satellite cell (SC) activity in growing-finishing beef cattle as well as the effects of SC-conditioned media on preadipocyte gene expression and differentiation. Fall-weaned Angus steers (n = 76; $258{\pm}28kg$) were randomly assigned to 1 of 4 stocker production systems: 1) grazing dormant native range (NR) supplemented with a 40% CP cottonseed meal-based supplement ($1.02kg{\cdot}steer^{-1}{\cdot}d^{-1}$) followed by long-season summer grazing (CON, 0.46 kg/d); 2) grazing dormant NR supplemented with a ground corn and soybean meal-based supplement fed at 1% of BW followed by short-season summer grazing (CORN, 0.61 kg/d); 3) grazing winter wheat pasture (WP) at high stocking density (3.21 steers/ha) to achieve a moderate rate of gain (LGWP, 0.83 kg/d); and 4) grazing winter WP at low stocking density (0.99 steers/ha) to achieve a high rate of gain (HGWP, 1.29 kg/d). At the end of the stocker (intermediate harvest, IH) and finishing (final harvest, FH) phases, 4 steers / treatment were harvested and longissimus muscles (LM) sampled for cryohistological immunofluorescence analysis and SC culture assays. At IH, WP steers had greater LM fiber cross-sectional area than NR steers; however, at FH, the opposite was observed (p < 0.0001). At IH, CORN steers had the lowest Myf-5+:Pax7+ SC density (p = 0.020), while LGWP steers had the most Pax7+ SC (p = 0.043). At FH, CON steers had the highest LM capillary density (p = 0.003) and their cultured SC differentiated more readily than all other treatments (p = 0.017). At FH, Pax7 mRNA was more abundant in 14 d-old SC cultures from HGWP cattle (p = 0.03). Preadipocytes exposed to culture media from proliferating SC cultures from WP cattle isolated at FH had more $PPAR{\gamma}$ (p = 0.037) and less FABP4 (p = 0.030) mRNA expression compared with NR cattle. These data suggest that different stocker management strategies can impact skeletal muscle growth, SC function, and potentially impact marbling development in growing-finishing beef cattle.

Characterization of a Tomato (Lycopersicon esculentum Mill.) Ripening-associated Membrane Protein (TRAMP) Gene Expression and Flavour Volatile Changes in TRAMP Transgenic Plants

  • Kim Seog-Hyung;Ji Hee-Chung;Lim Ki-Byung
    • Journal of Plant Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.87-95
    • /
    • 2005
  • The tomato ripening associated membrane protein (TRAMP) (Fray et al., 1994) is a member of the major intrinsic protein (MIP) family, defined as channels facilitating the passage of water and small solutes through membranes. During normal fruit ripening the TRAMP mRNA levels were increased whereas the expression levels of TRAMP in low ethylene ACO1-sense suppressed lines, Nr and rin fruits, were lower than at the breaker stage of wild type fruit. TRAMP mRNA is inhibited by $LaCl_3$, which is an inhibitor of $Ca^{2+}$-stimulated responses, treatment but drought condition did not affect TRAMP expression. The levels of TRAMP mRNA transcripts were substantially higher in the dark treated seedlings and fruits. These suggest that TRAMP function as a water channel may be doubted because of several reasons; no water content was changed during ripening in wild type, antisense and overexpression lines, TRAMP expression under light condition was lower than dark condition and TRAMP expression was not changed in drought condition. Co-suppression plant, 3588 was one of sense suppression lines, which contain CaMV 35S promoter and sense pNY507 cDNA, produced small antisense RNA, approximately 21-25 nucleotides in length, mediated post-transcriptional gene silencing. Therefore, TRAMP expression was inhibited by small antisense and multiple copies might induce gene silencing without any production of double strand RNA. Total seven selected volatile productions, isobutylthiazole, 6-methyl-5-hepten-2-one, hexanal, hexenal methylbutanal, hexenol, and methylbutanol, were highly reduced in sense line whereas total volatile production was increased in TRAMP antisense line. These results suggested TRAMP might change volatile related compounds.

Nur77 inhibits TR4-induced PEPCK expression in 3T3-L1 adipocytes

  • Park, Sung-Soo;Kim, Eung-Seok
    • Animal cells and systems
    • /
    • v.16 no.2
    • /
    • pp.87-94
    • /
    • 2012
  • Nur77 is a member of the nuclear receptor 4A (NR4A) subgroup, which has been implicated in energy metabolism. Although Nur77 is found in adipose tissue, where TR4 plays a key role in lipid homeostasis, the role of Nur77 in adipogenesis is still controversial. Although the Nur77 responsive element (AAAGGTCA) is partially overlapped with TR4-binding sites (AGGTCA $n$ AGGTCA: $n$=0-6), the regulatory role of Nur77 in TR4 function associated with adipocyte biology remains unclear. Here, we found that Nur77 inhibits adipogenesis and TR4 transcriptional activity. Treatment with a Nur77 agonist, 1,1-bis(3'-indolyl)-1-($p$-anisyl)-methane, during 3T3-L1 adipocyte differentiation reduced adipogenesis. In reporter gene analysis, Nur77 specifically suppressed TR4 transcription activity but had little effect on $PPAR{\gamma}$ transcription activity. Consistently, Nur77 also suppressed TR4-induced promoter activity of the TR4 target gene PEPCK, which is known to be important for glyceroneogenesis in adipose tissue. Furthermore, Nur77 suppressed TR4 binding to TR4 response elements without direct interaction with TR4, suggesting that Nur77 may inhibit TR4 transcription activity via binding competition for TR4-binding sites. Furthermore, DIM-C-$pPhOCH_3$ substantially suppressed TR4-induced PEPCK expression in 3T3-L1 adipocytes. Together, our data demonstrate that Nur77 plays an inhibitory role in TR4-induced PEPCK expression in 3T3-L1 adipocytes.

Transcriptome Analysis of Antrodia cinnamomea Mycelia from Different Wood Substrates

  • Jiao-Jiao Chen;Zhang Zhang;Yi Wang;Xiao-Long Yuan;Juan Wang;Yu-Ming Yang;Yuan Zheng
    • Mycobiology
    • /
    • v.51 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • Antrodia cinnamomea, an edible and medicinal fungus with significant economic value and application prospects, is rich in terpenoids, benzenoids, lignans, polysaccharides, and benzoquinone, succinic and maleic derivatives. In this study, the transcriptome of A. cinnamomea cultured on the wood substrates of Cinnamomum glanduliferum (YZM), C. camphora (XZM), and C. kanehirae (NZM) was sequenced using the high-throughput sequencing technology Illumina HiSeq 2000, and the data were assembled by de novo strategy to obtain 78,729 Unigenes with an N50 of 4,463 bp. Compared with public databases, about 11,435, 6,947, and 5,994 Unigenes were annotated to the Non-Redundant (NR), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genome (KEGG), respectively. The comprehensive analysis of the mycelium terpene biosynthesis-related genes in A. cinnamomea revealed that the expression of acetyl-CoA acetyltransferase (AACT), acyl-CoA dehydrogenase (MCAD), 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), mevalonate pyrophosphate decarboxylase (MVD), and isopentenyl diphosphate isomerase (IDI) was significantly higher on NZM compared to the other two wood substrates. Similarly, the expression of geranylgeranyltransferase (GGT) was significantly higher on YZM compared to NZM and XZM, and the expression of farnesyl transferase (FTase) was significantly higher on XZM. Furthermore, the expressions of 2,3-oxidized squalene cyclase (OCS), squalene synthase (SQS), and squalene epoxidase (SE) were significantly higher on NZM. Overall, this study provides a potential approach to explore the molecular regulation mechanism of terpenoid biosynthesis in A. cinnamomea.

Temporal Changes in N Assimilation and Metabolite Composition of Nitrate-Affected Tomato Plants

  • Sung, Jwakyung;Lee, Suyeon;Lee, Yejin;Kim, Rogyoung;Lee, Juyoung;Lee, Jongsik;Ok, Yongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.910-919
    • /
    • 2012
  • The role of inorganic nitrogen assimilation in the production of amino acids, organic acids and soluble sugars is one of the most important biochemical processes in plants, and, in order to achieve normally, nitrate uptake and assimilation is essential. For this reason, the characterization of nitrate assimilation and metabolite composition from leaves, roots and xylem sap of tomato (Solanum lycopersicum) was investigated under different nitrate levels in media. Tomato plants were grown hydroponically in liquid culture under five different nitrate regimes: deficient (0.25 and 0.75 mM $NO_3{^-}$), normal (2.5 mM $NO_3{^-}$) and excessive (5.0 and 10.0 mM $NO_3{^-}$). All samples, leaves, roots and xylem sap, were collected after 7 and 14 days after treatment. The levels of amino acids, soluble sugars and organic acids were significantly decreased by N-deficiency whereas, interestingly, they remained higher in xylem sap as compared with N-normal and -surplus. The N-excessive condition did not exert any significant changes in metabolites composition, and thus their levels were similar with N-normal. The gene expression and enzyme activity of nitrate reductase (NR), nitrite reductase (NIR) and glutamine synthetase (GS) were greatly influenced by nitrate. The data presented here suggest that metabolites, as a signal messenger, existed in xylem sap seem to play a crucial role to acquire nitrate, and, in addition, an increase in ${\alpha}$-ketoglutarate pathway-derived amino acids under N-deficiency may help to better understand plant C/N metabolism.