• Title/Summary/Keyword: NPY

Search Result 79, Processing Time 0.031 seconds

Effects of Mahangeuigam-Tang on Obesity-related Factors in Brain and Gastrointestinal Tract of Mice (마행의감탕(麻杏薏甘湯)이 생쥐의 뇌와 위장관에서 비만관련 인자에 미치는 영향)

  • Kim, Tae-Heon;Lee, Chang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.166-174
    • /
    • 2012
  • To determine the effects of Mahaengeuigam-tang(MHEGT) on obesity, the obesity-related factors (gastrin, CGRP, ghrelin, glucagon-like peptide-1, insulin, orexin, leptin, serotonin, NPY) were investigated in the stomach, pancreas, brain of mice by immunohistochemical methods for 4 weeks after Mahaengeuigam-tang(MHEGT) administration. The change of boy weight decreased in MHEGT administered group than that of control group. The immunohistochemical density of the gastrin and CGRP positive cells on pylorus of stomach increased in MHEGT administered group than that of control group. The number of ghrelin immunoreactive cells on stomach decreased in MHEGT administered groups than that of control group. The immunohistochemical density of GLP-1 in the pancreas decreased in MHEGT administered group than that of control group. The immunohistochemical density of insulin positive cells in the pancreas decreased in MHEGT administered group than that of control group. The immunohistochemical density of orexin and NPY positive neurons in the diencephalon was slightly stronger in MHEGT administered group than that of control group. The immunohistochemical density of serotonin and leptin positive neurons was stronger in MHEGT administered group than that of control group. These results demonstrate that Mahaengeuigam-tang(MHEGT) increased the immunohistochemical density of factors related to appetite inhibitors, and decreased the immunohistochemical density of factors related to stimulator of food intake in stomach, pancreas and brain.

Analysis of copy number variation in 8,842 Korean individuals reveals 39 genes associated with hepatic biomarkers AST and ALT

  • Kim, Hyo-Young;Cho, Seo-Ae;Yu, Jeong-Mi;Sung, Sam-Sun;Kim, Hee-Bal
    • BMB Reports
    • /
    • v.43 no.8
    • /
    • pp.547-553
    • /
    • 2010
  • Biochemical tests such as aspartate aminotransferase (AST) and alanine aminotransferase (ALT) are useful for diagnosing patients with liver disease. In this study, we tested the association between copy number variation and the hepatic biomarkers AST and ALT based on 8,842 samples from population-based cohorts in Korea. We used Affymetrix Genome-Wide Human 5.0 arrays and identified 10,534 CNVs using HelixTree software. Of the CNVs tested using univariate linear regression, 100 CNVs were significant for AST and 16 were significant for ALT (P < 0.05). We identified 39 genes located within the CNV regions. DKK1 and HS3ST3B1 were shown to play roles in heparan sulfate biosynthesis and the Wnt signaling pathway, respectively. NAF1 and NPY1R were associated with glycoprotein processes and neuropeptide Y receptor activity based on GO categories. PTER, SOX14 and TM7SF4 were expressed in liver. DPYS and CTSC were found to be associated with dihydropyrimidinuria and Papillon-Lefevre syndrome phenotypes using OMIM. NPY5R was found to be associated with dyslipidemia using the Genetic Association Database.

A literature Review of Single Nucleotide Polymorphisms in Obesity Genes (비만 유전자 단일 염기 다형성 문헌 고찰)

  • Kim, Sung-Soo;Song, Hee-Ok
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.4 no.1
    • /
    • pp.139-160
    • /
    • 2004
  • The obesity is detrimental to the health of people living in affluent societies. Individual differences in energy metabolism are caused primarily by single nucleotide polymorphisms(SNPs), some of which promote the development of obesity-related type 2 diabetes mellitus. Type 2 diabetes mellitus is a common multifactorial genetic syndrome, which is determined by several different genes and environmental factors. In this review, five major conclusions are reached: (1)To be clinically significant, SNPs must be relevant, prevalent, modifiable, and measurable. (2)Differences in SNPs may have been caused by famine, ultraviolet light, alcohol, climate, agricultural revolution. livestock, lactase persistence, and westernized lifestyle. (3)Candidate obesity genes of calorie intake restriction are SIM 1, MC3R, MC4R, AGRP, CART, CCK, CNTFR, DRD2, Ghrelin, 5-HT receptor, NPY, PON and those of energy metabolism are LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, PGC-1, Androgen receptor and those of fat mobilization are AGT, ACE, ADA, APM1, Apolipoproteins, PPAR, FABP, FOXC2, GCGR, $11-{\beta}HSDI$, LDLR, Hormonal sensitive lipase, Perilipin, $TNF-{\alpha}$, $TNF-{\beta}$ (4)Candidate obesity genes in the eastern are NPY, LEP, LEPR, UCP1, UCP2, UCP3, B2AR, B3AR, ACE, APM1, PPAR, and FABP. (5)Candidate obesity genes in type 2 diabetes mellitus are MC3R, MC4R, B2AR, B3AR, ADA, APM1, PPAR, FABP, FOXC2, PC1, PC2, ABCC8, CAPN10, CYP19, CYP7, ENPP1, GCK, GYS1, IGF, IL-6, Insulin receptor, IRS, and LPL. The discovery of SNPs will lead to a greater understanding of the pathogenesis of obesity and to better diagnostics, treatment, and eventually prevention.

  • PDF

The Effect of Yangkyuksanhoa-tang Extracts on the Changes of the Immunoreactive Nerve Fiber in the Rat Basilar Artery after Subarachnoid Hemorrhage (지주막하출혈 후 뇌기저동맥벽에 존재하는 면역양성 신경섬유의 변화에 미치는 양격산화탕(凉膈散火湯)의 효과)

  • Lee, Dong-Weon;Lee, Won-Chul
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.8 no.1
    • /
    • pp.117-131
    • /
    • 1999
  • Yangkyuksanhoa-tang is frequently used for cerebrovascular accident(CVA). The present study was performed to investigate the effect of Yangkyuksanhoa-tang on the peri vascular immunoreactive nerve fiber of the basilar artery after experimentally induced subarachnoid hemorrhage(SAH). Sprague Dawley rats weighing between 350-400g were used. The SAH induced by injection of the fresh autologus heart blood(0.3-0.4ml) into the cisterna magna through the posterior atlanto-occipital membrane. Sample group was given a $3.3m{\ell}/kg/day$ of Yangkyuksanhoa-tang extracts for 2 days after SAH. The experimental animals divided into 48hrs after SAH. The changes of perivascular immunoreactive nerve fiber was examined by using indirect immunofluorescence method. The meshlike perivascular nerve fiber appeared in the basilar artery of normal rats. In basilar artery of SAH elicitated rat, the distribution of calcitonin gene-related peptide (CGRP)-immunoreactivity(IR) and vasoactive intestinal polypeptide(VIP)-IR of the perivascular nerve fiber were remarkably diminished, also dopamine beta hydroxylase(DBH)-IR, neuropeptide Y(NPY)-IR and serotonin-IR were diminished. In SAH elicitated rat with Yangkyuksanhoa-tang treatment, the CGRP-IR and VIP-IR degree were repaired as well as normal rat's, but DBH-IR, NPY-IR and serotonin-IR had no changes. These results provide the basic data to investigate the effect of Yangkyuksanhoa-tang on the vasospasm after SAH.

  • PDF

Acupuncture Stimulation to HT8 Enhances Cell Proliferation in Hippocampus on an Epilepsy Mouse Model (마우스 간질 동물모델에서 소부혈 자침이 해마 치상회의 신경세포증식에 미치는 영향)

  • Kim, Seung-Tae;Park, Hae-Jeong;Hong, Mee-Sook;Kim, Seung-Nam;Doo, Ah-Reum;Yin, Chang-Shik;Lee, Hye-Jung;Chung, Joo-Ho;Park, Hi-Joon
    • Korean Journal of Acupuncture
    • /
    • v.27 no.2
    • /
    • pp.49-56
    • /
    • 2010
  • 목적 : 뇌의 신경세포 증식은 해마 치상회와 뇌실하영역에서만 나타나는 현상이다. Kainic acid(KA)를 이용한 간질 동물모델을 연구하던 중 침이 해마 치상회의 신경세포증식을 촉진하는 현상을 발견하여 이를 보고하고자 한다. 방법 : 수컷 ICR계 생쥐를 Saline(n=8), KA(n=8), KA+Acu(n=8)의 세 군으로 나누고, 모든 생쥐들에게 KA 주입 3일 전부터 1일 1회씩 5'-bromodeoxyuridine(BrdU)을 3일간 주입하였다. Saline군에는 멸균된 생리식염수를 뇌실 내에 주입하였고, KA군 및 KA+Acu군에는 $0.1{\mu}g$의 KA를 뇌실 내에 주입하였으며, KA+Acu군에 속한 쥐들에게는 KA 주입 2일전, 1일전, 주입 직후에 양쪽 소부(少府)(HT8)에 자침하였다. KA 주입 3시간 후 쥐의 뇌를 적출하고 해마 치상회부위의 BrdU 및 neuropeptide Y (NPY)의 발현을 측정하였다. 결과 : 소부(少府) 자침이 KA의 독성으로 인한 신경세포의 파괴를 줄여주었으며, BrdU 양성 세포 및 NPY를 유의하게 증가시켰다. KA 주입시 세포증식이 일어나긴 하나, 3시간 안에는 거의 일어나지 않는다. 결론 : 소부(少府) 자침이 해마 치상회의 신경세포증식을 촉진하며, 이는 KA의 효과가 아닌 KA 투여 전 소부(少府) 자침으로 인한 것으로 사료된다.

Effects of Norepinephrine and Neuropeptide Y on the Contractility of Small Mesenteric Artery from 2K1C and DOCA-Salt Hypertensive Rats

  • Nam, Sang-Chae;Kang, Seong-Su;Kim, Won-Jae;Lee, Jong-Un
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.55-61
    • /
    • 2000
  • The present study was conducted to investigate the possible role of the sympathetic nervous system in two-kidney, one clip (2K1C) and deoxycorticosterone acetate (DOCA)-salt hypertension. 2K1C and DOCA- salt hypertension were made in Sprague-Dawley rats. Four weeks after induction of hypertension, systolic blood pressure measured in conscious state was significantly higher in 2K1C $(216{\pm}18\;mmHg)$ and DOCA-salt $(205{\pm}29\;mmHg)$ groups than that in control $(128{\pm}4\;mmHg).$ The third branches (<300 ${\mu}m$ in outer diameter) of the mesenteric artery were isolated and cut into ring segments of $2{\sim}3$ mm in length. Each ring segment was mounted in tissue bath and connected to a force displacement transducer for measurement of isometric tension. The arterial rings were contracted by application of norepinephrine (NE) in a dose-dependent manner. The amplitude of the NE-induced contraction of the vessels was significantly larger in hypertension than in control. The NE-induced contraction was significantly enhanced by neuropeptide Y (NPY) in hypertension. Reciprocally, NPY-elicited vasocontraction was increased by NE in hypertension. These results suggest that the sympathetic nervous system contributes to the development of 2K1C and DOCA-salt hypertension.

  • PDF

Regulation of appetite-related neuropeptides by Panax ginseng: A novel approach for obesity treatment

  • Phung, Hung Manh;Jang, Dongyeop;Trinh, Tuy An;Lee, Donghun;Nguyen, Quynh Nhu;Kim, Chang-Eop;Kang, Ki Sung
    • Journal of Ginseng Research
    • /
    • v.46 no.4
    • /
    • pp.609-619
    • /
    • 2022
  • Obesity is a primary factor provoking various chronic disorders, including cardiovascular disease, diabetes, and cancer, and causes the death of 2.8 million individuals each year. Diet, physical activity, medications, and surgery are the main therapies for overweightness and obesity. During weight loss therapy, a decrease in energy stores activates appetite signaling pathways under the regulation of neuropeptides, including anorexigenic [corticotropin-releasing hormone, proopiomelanocortin (POMC), cholecystokinin (CCK), and cocaine- and amphetamine-regulated transcript] and orexigenic [agoutirelated protein (AgRP), neuropeptide Y (NPY), and melanin-concentrating hormone] neuropeptides, which increase food intake and lead to failure in attaining weight loss goals. Ginseng and ginsenosides reverse these signaling pathways by suppressing orexigenic neuropeptides (NPY and AgRP) and provoking anorexigenic neuropeptides (CCK and POMC), which prevent the increase in food intake. Moreover, the results of network pharmacology analysis have revealed that constituents of ginseng radix, including campesterol, beta-elemene, ginsenoside Rb1, biotin, and pantothenic acid, are highly correlated with neuropeptide genes that regulate energy balance and food intake, including ADIPOQ, NAMPT, UBL5, NUCB2, LEP, CCK, GAST, IGF1, RLN1, PENK, PDYN, and POMC. Based on previous studies and network pharmacology analysis data, ginseng and its compounds may be a potent source for obesity treatment by regulating neuropeptides associated with appetite.

Inhibitory Effects of Dansam and Dansam-eum on Reflux Esophagitis and Migration of Cancer Cells (단삼과 단삼음의 역류성 식도염 억제 효과 및 암세포 이주 억제 효과)

  • Jung-yeon Kwon;Sang-hyun An;Kyung-hwan Kong
    • The Journal of Internal Korean Medicine
    • /
    • v.43 no.6
    • /
    • pp.1162-1185
    • /
    • 2022
  • Purpose: We examined the effects of Dansam (Salvia miltiorrhiza Bunge, SM) and Dansam-eum (DSE) on gastroesophageal reflux disease (GERD) and reflux esophagitis by comparing the inhibitory effects of SM and DSE with the representative treatment of PPI Omeprazole to determine if the effects of the prescription DSE based on Korean medicine are better than those of a single-use of SM. Methods: We performed experiments using both animal models and cancer cells. Results: Comparison of SM and DSE with PPI in the animal model tests revealed that the effects were superior for SM and DSE than for PPI in all categories (8-OHdG, p-IκB, PAR2, COX-1, cathelicidin, p-JNK, Caspase 3, ATP6V1B1, GRPR, serotonin, and NPY). In three categories (COX-1, serotonin, and NPY), SM and DSE showed superior results over the Controls. In the animal model tests, DSE was superior to SM in all categories except for serotonin. The anti-cancer effects observed in cancer cell tests revealed that SM and DSE had meaningful results in terms of cytotoxicity and cell movement rate, as well as in cancer cell apoptosis. Conclusions: We confirmed that SM and DSE can have effects on reflux esophagitis through the regulation of oxidative stress, inflammation, mucosal protection, apoptosis, proton pumping, and the enteroendocrine system in the stomach and esophagus. We also confirmed that SM and DSE have superior effects to those of PPI on all aspects, especially gastric mucosa protection and enteroendocrine system control. We also confirmed that SM and DSE have anti-cancer effects. Above all, we confirmed that DSE has superior effects on almost all aspects compared to using SM alone.

Effect of Joksamni combination on NADPH-diaphorase, neuronal Nitric Oxide Synthase, Neuropeptide Y and Vasoactive Intestinal Peptide in the cerebral cortex of Spontaneously Hypertensive Rat (족삼리(足三里) 배혈(配穴)에 따른 전침(電鍼)이 흰쥐 대뇌피질(大腦皮質)의 NADPH-diaphorase와 nNOS, NPY, VIP 신경세포(神經細胞)에 미치는 영향(影響))

  • Jung, In-gy;Lee, Jae-dong;Kim, Chang-hwan
    • Journal of Acupuncture Research
    • /
    • v.20 no.5
    • /
    • pp.118-132
    • /
    • 2003
  • Objective: The aim of this study was to investigate the effects of Joksamni(ST36) combination on NAD PH-diaphorase, neuronal nitric oxide synthase(nNOS), neuropeptide Y(NPY) and vasoactive intestinal peptide (VIP) in the cerebral cortex of spontaneously hypertensive rat. Methods: The experimental groups were divided into four groups: Normal, Joksamni(ST36), Joksamni(ST36)+Eumneungcheon(SP9), and Joksamni(ST36)+Gokji(LI11). Needles were inserted into acupoints at the depth of 0.5cm with basic insertion method. Electroacupuncture was done under the condition of 2Hz electrical biphasic pulses with continuous rectangular wave lasting for 0.2ms until the muscles produced visible contractions. Such stimulation was applied continuously for 10 minutes, 1 time every 2 days for 10 sessions of treatments. Thereafter we evaluated changes in NADPH-d positive neurons histochemically and changes in nNOS, NPY and VIP positive neurons immunohistochemically. Results: The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in primary somatosensory cortex, visual cortex, auditory cortex, perirhinal cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of NADPH-d positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group with the exception of primary somatosensory cortex. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group in all areas of cerebral cortex and Joksamni(ST36)+Gokji(LI11) group in auditory cortex, perirhinal cortex, insular cortex were significantly increased as compared to the Joksamni(ST36) group. The optical densities of nNOS positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. The optical densities of NPY positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in primary motor cortex, primary somatosensory cortex, cingulate cortex as compared to the Joksamni (ST36) and Joksamni(ST36)+Eumneungcheon(SP9) groups. The optical densities of VIP positive neurons of the Joksamni(ST36)+Eumneungcheon(SP9) group were significantly increased in all areas of cerebral cortex except for cingulate cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in auditory cortex, cingulate cortex, perirhinal cortex as compared to the Joksamni(ST36) group. The optical densities of VIP positive neurons of the Joksamni(ST36)+Gokji(LI11) group were significantly decreased in all areas of cerebral cortex as compared to the Joksamni(ST36)+Eumneungcheon(SP9) group. Conclusions: The result demonstrated that electroacupuncture on Joksamni(ST36) and its combination change the activities of the NO system and peptidergic system in the cerebral cortex of SHR and that acupoint combination is one of the important parameters for the effects.

  • PDF