• Title/Summary/Keyword: NPS(Non-point source)

Search Result 104, Processing Time 0.032 seconds

Monitoring of Non-point Source Pollutants Generated by a Flower Farm

  • Choi, Byoungwoo;Kang, Meea
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.463-471
    • /
    • 2014
  • This paper considers the effect of rainfall on non-point source (NPS) pollutant loads. The impact of runoff on the occurrence of NPS pollutants was found to be influenced by rainfall amount, rainfall intensity, and the number of antecedent dry days (ADD), both independently and in combination. The close correlation ($R^2$ = 0.9920) between rainfall and runoff amounts was demonstrated at the study site (a flower farm) over the period between January 2011 and December 2013. The relationships among pollutant levels, runoff, and rainfall was not satisfactory results except for the Biochemical Oxygen Demand ($BOD_5$). The correlation coefficients between $BOD_5$, and both runoff and rainfall, were greater than 0.92. However, the relationships of other pollutants, such as Suspended Solid (SS), Chemical Oxygen Demand ($COD_{Mn}$), Total Nitrogen (TN), and Total Phosphorus (TP), with runoff and rainfall had correlation coefficients of less than 0.70. The roles of rainfall was different from rainfall categories on the occurrence of runoff. Instantaneous rainfall intensity was a principle factor on the occurrence of runoff following light rainfall events (total ${\leq}30mm$). For rainfall of intermediate intensity (total precipitation 31-50 mm), the combined effect of both average rainfall intensity and ADD was found to influence runoff generation. We conclude that the control of NPS pollutants with the reflection of the climate change that makes the remarkable effect of amounts and forms on the rainfall and runoff.

Quantitative Assessment of Nonpoint Source Load in Nakdong River Basin

  • Kwon, Heon-Gak;Lee, Jae-Woon;Yi, Youn-Jeong;Cheon, Se-Uk
    • Journal of Environmental Science International
    • /
    • v.23 no.1
    • /
    • pp.7-23
    • /
    • 2014
  • This study estimates unit for the nonpoint source(NPS), classified according to the existing Level-1(large scale) land cover map, by monitoring the measurement results from each Level-2(medium scale) land cover map, and verifies the applicability by comparison with previously calculated units using the Level-1 land cover map. The NPS pollutant loading for a basin is evaluated by applying the NPS pollutant unit to Dongcheon basin using the Level-2 land cover map. In addition, the BASINS/HSPF(Better Assessment Science Integrating point & Non-point Sources/Hydrological Simulation Program-Fortran) model is used to evaluate the reliability of the NPS pollutant loading computation by comparing the loading during precipitation in the Dongcheon basin. The NPS pollutant unit for the Level-2 land cover map is computed based on precipitation measured by the Sangju observatory in the Nakdong River basin. Finally, the feasibility of the NPS pollutant loading computation using a BASINS/HSPF model is evaluated by comparing and analyzing the NPS pollutant loading when estimated unit using the Level-2 land cover map and simulated using the BASINS/HSPF models.

Contribution of Non-Point Pollution to Water Quality and Runoff Characteristics from Agricultural Area of the Upstream Watersheds of Lake Chinyang

  • Lee, Chun-Sik;Jang, Seong-Ho
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.259-267
    • /
    • 2013
  • In this study, non-point source(NPS) contribution was investigated based on flow rates and water qualities of streams into the lake during rainfall events. Event mean concentration(EMC) and the pollution loads were calculated to establish a database for NPS control measurement in the survey area, and so on. The runoff characteristics of NPS were investigated and estimated on the basis of the ratio of an agricultural to forest area in the stream of sub-catch basin during rainfall events. Non-point source pollution loads were also calculated to establish a database for NPS control measure in the upstream lake Chinyang. At a rainfall event, BOD concentrations rise sharply at the early peak time of runoff, however, peaks of TSS concentration were observed at the similar time of peak flow. This was a phenomenon shown at the watersheds caused by forest and geological types. The discharged EMC range was 2.9-4.8 mg/L in terms of BOD. The discharged EMC range was 6.2-8.2 mg/L in terms of SS. The discharged EMCs of T-N and T-P were 1.4-2.5 mg/L and 0.059-0.233 mg/L, respectively. Total BOD loading rate through the 3 tributaries to the lake Chinyang was 1,136 kg/d during dry weather. The upper watershed area of the Nam-river dam in this study was divided into 14 catchment basins based on the Korean guideline for total maximum daily load(TMDL) of water quality pollutants. The higher the agricultural land-use ratio, the more NPS loading rate discharged, but the more occupied a forest area, the lower more NPS loading rate discharged. In an agricultural land-use area more than 20%, the increase of NPS loadings might be dramatically diffused by increasing the integrated complex-use like vinyl-house facilities and fertilizer use etc. according to the effective land-use utilization. The NPS loading rates were BOD 0.3 $kg/ha{\cdot}day$, SS 0.21 $kg/ha{\cdot}day$, TN 0.02 $kg/ha{\cdot}day$, TP 0.005 $kg/ha{\cdot}day$ under less than 10% agricultural land-use. In agricultural land-use of 20%-50%, these values were investigated in the range of 0.32 $kg/ha{\cdot}day$-0.73 $kg/ha{\cdot}day$ for BOD, 0.92 $kg/ha{\cdot}day$-3.32 $kg/ha{\cdot}day$ for SS, 0.70 $kg/ha{\cdot}day$-0.90 $kg/ha{\cdot}day$ TN, 0.03 $kg/ha{\cdot}day$-0.044 $kg/ha{\cdot}day$ for TP.

Development of Relational Database Management System for Agricultural Non-point Source Pollution Control (관계형 데이터베이스를 이용한 농업비점 자료 관리 시스템 개발)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong;Hwang, Soon Ho;Song, Jung-Hun;Jun, Sang Min
    • Journal of Korean Society of Rural Planning
    • /
    • v.19 no.4
    • /
    • pp.319-327
    • /
    • 2013
  • The objective of this research was to develop a relational database management system(RDBMS) to collect, manage and analyze data on agricultural non-point source(NPS) pollution. The system consists of the relational database for agricultural NPS data and data process modules. The data process modules were composed of four sub-modules for data input, management, analysis, and output. The data collected from the watershed of the upper Cheongmi stream and Geunsam-Ri were used in this study. The database was constructed using Apache Derby with meteorological, hydrological, water quality, and soil characteristics. Agricultural NPS-Data Management System(ANPS-DMS) was developed using Oracle Java. The system developed in this study can deal with a variety of agricultural NPS data and is expected to provide an appropriate data management tool for agricultural NPS studies.

Analysis of Non-point Pollution Source Removal Efficiencies according to Rainfall Characteristics in Low Impact Development Facilities with Vegetation (식생이 적용된 비점오염 저감시설의 강우 특성에 따른 효율 분석)

  • Ku, Soo-Hwan;Im, Jiyeol;Oa, Seong-Wook;Gil, Kyungik
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.3
    • /
    • pp.247-255
    • /
    • 2017
  • This research was conducted to analyze removal efficiencies of non-point pollution source (NPS) in low impact development (LID) facilities with vegetation. In this research, removal efficiencies of NPS were calculated using rainfall monitoring data for 5 years in grassed swale (GS) and vegetative filter strip (VFS). TSS was greater than other pollutants, and it ranged 11.9 ~ 351.7 mg/L in GS and 12.8 ~ 350.7 mg/L in VFS. Outflow EMCs were reduced than inflow EMCs, overall removal efficiencies of NPS were 67 ~ 86% in GS and 63 ~ 91% in VFS. 50 % reduction efficiency of rainfall runoff was observed between inflow and outflow in each LID facility. TSS removal efficiency in GS and VFS was correlated with rainfall characteristics. The rainfall for TSS removal efficiency over 50% was determined about 31 mm, 34 mm and average rainfall intensity was 3.0 mm/hr, 3.9 mm/hr in GS and VFS. Therefore, GS and VFS were regarded effective LID facilities as removal of pollutants and rainfall runoff. Also, this research result can be used as an important data for management of NPS.

Assessing Impact of Reduction of Non-Point Source Pollution by BASINS/HSPF (HSPF를 이용한 비점오염원 삭감에 따른 효과 분석)

  • Bae, Dae-Hye;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2011
  • This paper aims to assessing impact of reduction of non-point source pollution in the Bokha Stream watershed. The BASINS/HSPF model was calibrated and verified for water flow and water qualities using Total Maximum Daily Load 8days data from 2006 to 2007. Accuracy of the BASINS/HSPF models in simulating hydrology and water quality was compared and there were somewhat differences of statistical results, but water flow and water quality were simulated in good conditions over the study period. The applicability of models was tested to evaluate non-point source control scenarios to response hydrology and water quality in the Bokha stream using various measures which include BMPs approach and change of landuse. The evaluation of reduction of non-point source pollution was developed using load-duration curve. Despite strong reduction of non-point source, there are not satiated target quality at low flow season.

Characteristics of NPS Pollution from a Coal Mining (가행광산 지역의 비점오염물질 유출특성)

  • Seo, Jiyeon;Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Jung, Myung-suk;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.474-481
    • /
    • 2010
  • This study was conducted to describe the characteristics of Non-point source (NPS) Pollution discharge from a coal mining area in Korea. The study areas is located on the Dogye site, Samchuk, Kangwon Province Coal Corporation and the Jangsung site, Taebaek, Kangwon Province Coal Corporation. The monitoring system was installed at a drainage channel and water samples and rainfall events were collected during March 2008 to February 2009. The collected water samples were analyzed with respect to SS, BOD, $COD_{Cr}$, $COD_{Mn}$, T-N, T-P, and TOC, respectively. It was observed that the runoff and water quality were largely influenced by mine drainage. Also a significant relationship was observed from the correlation between flow and water quality, flow and NPS. And estimated Event Mean Concentration (EMC), NPS pollution loads were Dogey coal mine and Taeback coal mine respectively. As the study progresses in the future, runoff and pollution loads will be updated.

A Simulation of the Runoff and the NPS Pollutants Discharge using SWMM Model (SWMM 모형을 이용한 도시 유역의 유출 및 NPS 오염물 배출 모의)

  • 신현석;윤용남
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.125-135
    • /
    • 1993
  • This study was conducted for two purposes. The first was the selection of the proper model for the urban runoff, and NPS(non-point source) loads and the second was the adjustment of the selected model through the calibration and the verification of the observed data on an urban drainage basin. The selected model for this study was the Storm Water Management Model(SWMM) developed and maintained by the US Environmental Protection Agency(EPA). In particular, the Runoff Block for the surface discharge and the Transport Block for the flow routing was used. The study basin is Youngdu basin, which is a typical developed urban drainage basin. The four rainfall events for the runoff and the two for the four NPS pollutants(SS, BOD, COD and TN) were used for the calibration and the estimation of the model parameters. This study performed the calibration with regard to the peak discharge, the time to peak discharge, the volume and the relative error for three items. It was shown that SWMM can successfully be used for the prediction of the runoff and the NPS pollutants discharge. The result of this study can be used as the basis for the analysis of the correlation between the runoff and the NPS pollutants discharges, and the analysis of the mass balance with the monthly and annual NPS loads in an urban drainage basin.

  • PDF

Prioritizing subwatersheds for non-point source pollution management in Saemangeum watershed using AHP technique (AHP 기법을 이용한 새만금유역의 비점오염원 우선관리지구 선정)

  • Woo, Hye-Jin;Jang, Taeil;Choi, Jin-Kyu;Son, Jae-Kwon
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.3
    • /
    • pp.101-112
    • /
    • 2015
  • The objective of this study was to investigate non-point sources (NPS) pollution and prioritize management areas affected by NPS pollution in the Saemangeum Watershed. AHP (Analytical Hierarchy Process) technique was selected to prioritize sub-watersheds for effectively managing NPS pollution in this study areas. Generation properties of NPS pollution, discharge properties of NPS pollution, and runoff properties of NPS pollution were selected and set for AHP. Weighted descriptors including indicators like numbers of livestock, land- and livestock-system loads, rainfall, and impervious area ratio were generalized from 0 to 1 and multiply each index based on screened 17 survey data. The results were visualized as maps which enable resource managers to identify sub-watersheds for effective improving water quality. The sub-watersheds located in Gongdeok-Myeon, Yongji-Myeon, Hwangsan-Myeon of Gimje-Si were selected for managing NPS pollution control areas. This result presented that these sub-watershed are more affected by the pollution from livestock-system than from land-system. The finding from this study can be used to screen sub-watersheds that need further assessment by managers and decision-makers within the study area.

An Analysis of First Flush Phenomenon of Non-point Source Pollution during Rainfall-Runoff Events from Impervious Area (불투수성 지역의 강우유출수에 대한 비점오염물질의 초기유출현상 분석)

  • Ahn, Tae-Ung;Bum, Bong-Su;Kim, Tae-Hoon;Choi, I-Song;Oh, Jong-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.643-653
    • /
    • 2013
  • In this study, trend analysis was performed by various runoff analysis method of Non-point Pollution Source(NPS) at the impervious area. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength and it appeared that first flush phenomenon occurs often if rainfall strength acts largely. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. As the result of calculating Decrease Rate (DR) by first flush of non-point pollution source, it is judged that it is important to prepare the measure against the pollutants about initial rain and it is necessary to calculate the capacity of non-point pollution source processing facilities regarding that now that the non-point pollution source integrated at impervious area showed the characteristics that are flowed out in high concentration by initial rain in case of non-rainfall considering the characteristics of non-point pollution source at impervious area. When taking 50% of non-point pollution source as the standard for decrease rate that was evaluated previously, it appeared as 15~60 min in case of TSS and it appeared as 30~90 min in case of organic compound, but the characteristic whose decrease rate is below 50% also appeared even till rainfall-runoff ends. Based on that, it is judged that it could be used as the reference when designing the structural BMPs facilities later.