• Title/Summary/Keyword: NPP Accident Analysis

Search Result 58, Processing Time 0.023 seconds

Analysis of wind field data surrounding nuclear power plants to improve the effectiveness of public protective measures

  • Jin Sik Choi;Jae Wook Kim;Han Young Joo;Jeong Yeon Lee;Chae Hyun Lee;Joo Hyun Moon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3599-3616
    • /
    • 2023
  • After a nuclear power plant (NPP) accident, it would be helpful to predict the movement of the radioactive plume emitted from the NPP as accurately as possible to protect the nearby population. Radioactive plumes are mainly affected by wind direction and speed. Since it is difficult to identify the wind direction and speed immediately after the accident, a good understanding of the historical wind data could save many lives and ensure smoother evacuation procedures. In this study, wind data for the past 10 years are analyzed for the five NPPs in the Republic of Korea (ROK). The analyzed data include wind direction and wind speed from 2012 to 2021. In particular, the characteristics of the wind field blowing from the NPPs to the nearest densely populated regions are examined. Finally, suggestions to improve evacuation plans are made.

A Study on Effect of Capture Volume in a Cavity on Direct Containment Heating Phenomena

  • Chung, C.Y.;Kim, M.H.;Lee, H.Y.;Kim, P.S.
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.290-298
    • /
    • 1996
  • Direct Containment Heating, DCH, is supposed to occur during a core melt-down accident if the primary system pressure is still high at the time of vessel breach in a Nuclear Power Plant (NPP). In this case, DCH is considered to be one of very important severe phenomena during postulated severe accident scenario because of the fast heat transfer rate to atmosphere and the sharp pressure increase in a containment. To reduce the effect of this DCH phenomena, the capture volume wes designed at Ulchin NPP units 3 and 4. But, the effect of this has not been studied extensively. This work consists of experimental and numerical analyses of the effects of capture volume in the cavity on DCH phenomena. The experimental model is a 1/30 scaled-down model of Ulchin NPP units 3 and 4. We used three types of capture volumes to investigate the effect of size. Numerical analysis using CONTAIN 1.2 is performed with the correlation for the dispersed fraction of molten corium from the cavity into the containment derived from the experimental data to examine the effect of capture volume on DCH phenomena in full scale of Ulchin NPP units 3 and 4.

  • PDF

An Analysis of Operating Experience Reports Published in the Domestic Nuclear Power Plants for Resent 5 Years (최근 5년간 국내원전 운전경험보고서 분석)

  • Lee, Sang-Hoon;Kim, Je-Hun;Hur, Nam-Young
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • The Operating Experience Report(OER) has written about the event and accident happened at a Nuclear Power Plant(NPP). The purpose of publishing the OER is to prevent the similar event or accident repeatedly by spreading the experience of a single plant to other plants personnel. Before initiating the analysis mentioned in this paper, 2,298 review reports for the same number of OER published from 2007 to June 2012 have been written to achieve the correct and objective statistics. The analysis introduced in this paper is performed with the various factors such as year, plant type, equipment, type of work, root-cause. The root-cause analysis is showed that the equipment problem is the major factor in domestic NPPs, but on the other hand human-error is the main part of the foreign NPPs. Moreover, while the number of the man-made event is decreasing, the equipment-made event is rapidly increasing in domestic NPPs.

NUMERICAL ANALYSIS OF THE HYDROGEN-STEAM BEHAVIOR IN THE APR1400 CONTAINMENT DURING A HYPOTHETICAL TOTAL LOSS OF FEED WATER ACCIDENT (APR1400의 급수완전상실사고 시 격납건물 내에서 수소와 수증기의 3차원 거동에 대한 수치해석)

  • Kim Jongtae;Hong Seong-Wan;Kim Sang-Baik;Kim Hee-Dong
    • Journal of computational fluids engineering
    • /
    • v.10 no.3 s.30
    • /
    • pp.9-18
    • /
    • 2005
  • During a hypothetical severe accident in a nuclear power plant (NPP), hydrogen is generated by the active reaction of fuel-cladding and steam in the reactor pressure vessel and released with steam into the containment. In order to mitigate hydrogen hazards possibly occurred in the NPP containment, hydrogen mitigation system (HMS) is usually adopted. The design of the next generation NPP (APR1400) designed in Korea specifies 26 passive autocatalytic recombiners and 10 igniters installed in the containment for the hydrogen mitigation. in this study, the analysis of the hydrogen and steam behavior during a total lose of feed water (TLOFW) accident in the APR1400 containment has been conducted by using the CFD code GASFLOW. During the accident, a huge amount of hot water, steam, and hydrogen is released in the in-containment refueling water storage tank (IRWST). The current design of the APR1400 includes flap-type dampers at the IRWST vents which are operated depending on the pressure difference between inside and outside of the IRWST. it was found that the flaps strongly affects the flow structure of the steam and hydrogen in the containment. The possibilities of a flame acceleration and transition from deflagration to detonation (DDT) were evaluated by using Sigma-Lambda criteria. Numerical results indicate the DDT possibility could be heavily reduced in the IRWST compartment when the flaps are installed.

Cloud Computing Based Analysis Incorporated with the Internet of Things (IoT) in Nuclear Safety Assessment for Fukushima Dai-ichi Disaster (후쿠시마 다이-이치 재해에 대한 원자력 안전 평가에서 사물 인터넷 (IoT)과 통합된 클라우드 컴퓨팅 기반 분석)

  • Woo, Tae-Ho;Jang, Kyung-Bae
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.1
    • /
    • pp.73-81
    • /
    • 2020
  • The internet of things (IoT) using cloud computing is applied to nuclear industry in which the nuclear power plant (NPP) accident is analyzed for the safety assessment. The Fukushima NPP accident is modeled for the accident simulations where the earthquake induced plant failure accident is used for analyzing the cloud computing technology. The fast and reasonable treatment in the natural disaster was needed in the case of the Fukushima. The real time safety assessment (RTSA) and the Monte-Carlo real time assessment (MCRTA) are constructed. This cloud computing could give the practicable method to prepare for the future similar accident.

Structural safety reliability of concrete buildings of HTR-PM in accidental double-ended break of hot gas ducts

  • Guo, Quanquan;Wang, Shaoxu;Chen, Shenggang;Sun, Yunlong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1051-1065
    • /
    • 2020
  • Safety analysis of nuclear power plant (NPP) especially in accident conditions is a basic and necessary issue for applications and commercialization of reactors. Many previous researches and development works have been conducted. However, most achievements focused on the safety reliability of primary pressure system vessels. Few literatures studied the structural safety of huge concrete structures surrounding primary pressure system, especially for the fourth generation NPP which allows existing of through cracks. In this paper, structural safety reliability of concrete structures of HTR-PM in accidental double-ended break of hot gas ducts was studied by Exceedance Probability Method. It was calculated by Monte Carlo approaches applying numerical simulations by Abaqus. Damage parameters were proposed and used to define the property of concrete, which can perfectly describe the crack state of concrete structures. Calculation results indicated that functional failure determined by deterministic safety analysis was decided by the crack resistance capability of containment buildings, whereas the bearing capacity of concrete structures possess a high safety margin. The failure probability of concrete structures during an accident of double-ended break of hot gas ducts will be 31.18%. Adding the consideration the contingency occurrence probability of the accident, probability of functional failure is sufficiently low.

Occupational Dose Analysis of Spent Resin Handling Accident During NPP Decommissioning

  • Hyunjin Lee;Chang-Lak Kim;Sang-Rae Moon;Sun-Kee Lee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.247-253
    • /
    • 2023
  • According to NSSC Notice No. 2021-10, safety analysis needs to be introduced in the decommissioning plan. Public and occupational dose analyses should be conducted, specifically for unexpected radiological accidents. Herein, based on the risk matrix and analytic hierarchy process, the method of selecting accident scenarios during the decommissioning of nuclear power plants has been proposed. During decommissioning, the generated spent resin exhibits relatively higher activity than other generated wastes. When accidents occur, the release fraction varies depending on the conditioning method of radioactive waste and type of radioactive nuclides or accidents. Occupational dose analyses for 2 (fire and drop) among 11 accident scenarios have been performed. The radiation doses of the additional exposures caused by the fire and drop accidents are 1.67 and 4.77 mSv, respectively.

Sentiment analysis of nuclear energy-related articles and their comments on a portal site in Rep. of Korea in 2010-2019

  • Jeong, So Yun;Kim, Jae Wook;Kim, Young Seo;Joo, Han Young;Moon, Joo Hyun
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.1013-1019
    • /
    • 2021
  • This paper reviewed the temporal changes in the public opinions on nuclear energy in Korea with a big data analysis of nuclear energy-related articles and their comments posted on the portal site NAVER. All articles that included at least one of "nuclear energy," "nuclear power plant (NPP)," "nuclear power phase-out," or "anti-nuclear" in their titles or main text were extracted from those posted on NAVER in January 2010-December 2019. First, we performed annual word frequency analysis to identify what words had appeared most frequently in the articles. For that period, the most frequent words were "NPP," "nuclear energy," and "energy." In addition, "safety" has remained in the upper ranks since the Fukushima NPP accident. Then, we performed sentiment analysis of the pre-processed articles. The sentiment analysis showed that positive-tone articles have been reported more frequently than negativetone over the entire analysis period. Last, we performed sentiment analysis of the comments on the articles to examine the public's intention regarding nuclear issues. The analysis showed that the number of negative comments to articles each month-irrespective of positive or negative tone-was always larger than that of positive comments over the entire analysis period.