• Title/Summary/Keyword: NPK

Search Result 293, Processing Time 0.024 seconds

Mono-granular Compound Fertilizer Acting Slow Release for the Crops Under Vinyl Mulching Cultivation -I. Effect of formulation and granulation on slow release (비닐멀칭작물재배용(作物栽培用) 지효성(遲效性) 전용복비(專用複肥) 개발(開發) -I. 제립(製粒)이 지효성(遲效性)에 미치는 영향(影響))

  • Shin, Jae-Sun;Lim, Dong-Kyu;Seong, Ki-Seog;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.97-100
    • /
    • 1987
  • Medium grade mongranular compound fertilizers for the crops under vinyl mulching cultivation were formulated using the principal materials of urea, DAP and MOP in combination with various fillers of zeolite, gypsum and treated human waste and granulated with waste liquid of glutamic acid fermentation as binder. The ratios of $N-P_2O_5-K_2O$ of trial products were 12-10-11.5 for red pepper, 8-8-6 for sesame and 4-9-14 for peanut. The rate of dissolution of trial products was comparatively low in water. The product for red pepper had N dissolution rate of 80 percent during 24 hrs. 70 for peanut and 55 for seasame. The optimum dissolution rate has reported to be 50 percent by the standard laboratory dissolution test for 24 hrs. in water. Therefore, the slowly released characteristics were obtained with the products that had 24 hrs. dissolution of 70 to 60 percent. One time basal application of trial products could readily be justified under muching cultivation.

  • PDF

Effect of Customized Fertilizer Application and Soil Properties on Amino Acids Composition in Rice Grain

  • Sung, Jwakyung;Lee, Yejin;Chun, Hyenjung;Ha, Sangkeun;Sonn, Yeonkyu;Lee, Jongsik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.464-468
    • /
    • 2015
  • Our government has performed to support the nation-wide application of customized fertilizer based on soil-testing results and crop nutrient balance in order to promote the environment-friendly agriculture and to respond the global environment guide-line since 2010. This study was performed at the selected local paddy fields (Hwaseong-si, Uiseong-gun and Miryang-si) with different soil chemical properties in 2012. The contents of amino acids measured showed an increasing trend with fertilization, and glutamic acid was the most abundant amino acid followed by aspartic acid, leucine and alanine. However, valine, isoleusine, tyrosine and lysine were not significantly affected by fertilization. The significant differences in grain N, expressed as a crude protein, and amino acids dose was observed between experimental sites (p<0.001), treatments (p<0.01 to 0.001) and interaction of both factors (p<0.01 to 0.001). In our experiment the following order of carbon skeleton backbones to produce amino acids was observed irrespective of experiment sites and fertilization: ${\alpha}$-ketoglutarate > oxalate > pyruvate > 3-phosphoglycerate > phosphoenolpyruvate. In conclusion, customized fertilizer had no difference in amino acids compared to the conventional-NPK practice which was higher than in no fertilization, and also the normal paddy represented slightly higher amino acids compared to the reclaimed. Further study based on the present results is required to investigate what is main factor to amino acids between genetic and environmental factors.

The Properties of Livestock Waste Composts Tea Depending on Manufacturing Method and Their Effect on Chinese Cabbage Cultivation

  • Jang, Jae-Eun;Kang, Chang-Sung;Park, Jung-Soo;Kim, Sun-Jae;Kim, Hee-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.8-14
    • /
    • 2015
  • Livestock waste compost tea is a liquid extract of compost obtained by mixing livestock compost. In this study, some chemical and microbiological characteristics of compost tea depending on the kind of raw materials used were examined, and several experiments to investigate the practical effects on Chinese cabbage cultivation were conducted. This experiment showed that livestock composts needed to be added into aerated water at the ratio between 1:100 and 1:10 (1 part compost to 10~100 parts water) to produce the high quality compost tea. Compost teas must be aerated more than 24 to 48 hours to be able to support aerobic organisms. In cultivation test with compost teas, swine manure compost teas were made by the extracting ratio of 50x, in the aerated condition for 24 hours in water and oil cake in the extracting ratio of 100x were added as supplements. Following the input of oil cake, the concentration of nitrogen and aerobic bacteria increased. Another experiment was conducted to determine the effect of different swine manure compost teas on plant growth and yield of Chinese cabbage. The fresh yield of Chinese cabbage was higher in the fertigated plots by compost tea with oil cake compared to those of N, $P_2O_5$, $K_2O$ fertilization plot with chemical fertilizer by soil test recommendation (Fert. NPK). The effect of compost tea on growth of Chinese cabbage was largely attributable to the increased number of microorganisms as well as nutrients.

Carbon and Nitrogen Responses of Litterfall Components by NPK and PK Fertilizers in a Red Pine (Pinus densiflora S. et Z.) Stand

  • Park, Seong-Wan;Baek, Gyeongwon;Kim, Seongjun;Yang, A-Ram;Kim, Choonsig
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • This study was conducted to determine the carbon (C) and nitrogen (N) response of litterfall components as affected by N addition in compound fertilizer in a Korean red pine (Pinus densiflora S. et Z.) stand in southern Korea. Litterfall in a mature red pine stand was collected for two years following compound fertilizer application ($N_3P_4K_1$; $P_4K_1$) and no fertilization (control). The C concentration of litterfall components was not significantly (P > 0.05) different between the $N_3P_4K_1$ and the control plots, whereas the N concentration of the litterfall components was significantly higher in the $N_3P_4K_1$ plot than in the control plot. The $N_3P_4K_1$ and $P_4K_1$ additions induced a lower C/N ratio of litterfall components compared with the control plot. Annual C and N fluxes via litterfall components were not affected by the $N_3P_4K_1$ addition over the study period, except for reproduction litter. Annual N fluxes via reproduction litter were significantly higher in the $N_3P_4K_1$ plot than in the control plot. Thus, the $N_3P_4K_1$ and $P_4K_1$ additions could modify differently nutrient distribution of the forest floor and mineral soils in a red pine stand. These results indicate that N concentration and C/N ratio in litterfall components are more susceptible to fertilizer application than the C response in litterfall components.

Soil Chemical Properties - Variation with Altitude and Forest Composition: A Case Study of Kedarnath Wildlife Sanctuary, Western Himalaya (India)

  • Malik, Zubair A.;Haq, Shiekh Marifatul
    • Journal of Forest and Environmental Science
    • /
    • v.38 no.1
    • /
    • pp.21-37
    • /
    • 2022
  • The present study was carried out to evaluate the chemical properties of soil in relation to forest structure and composition at different altitudes (900-2,600 m asl) in a part of Western Himalaya. The composite soil samples were taken from three (viz. upper, middle and lower) depths. The soils of the whole study area were acidic in nature (pH=4.90-5.51). Contents of Nitrogen (N), Phosphorus (P), Potassium (K), Carbon (C) and soil organic matter (SOM) showed much fluctuation during different seasons of year. Nitrogen content showed significant positive correlations with altitude (r=0.924, p<0.05) and different community parameters like species diversity (r=0.892, p<0.01) and species richness (r=0.941, p<0.05). Phosphorus exhibited direct correlations with carbon (r=0.637) while weak negative correlations with different community parameters like species richness & diversity, total basal cover (TBC), density and canopy cover. Carbon content and hence SOM showed direct correlations with Nitrogen (r=0.821, p<0.01); Phosphorus (r=0.637, ns) and Potassium (r=0.540, ns). But no significant relationship was observed between K content and species richness (p=0.30, r=-0.504); between K content and species diversity (p=0.14, r=-0.672); between P content and species diversity (p=0.29, r=-0.513) and species richness (p=0.23, r=-0.575). Among the different soil nutrients, only N showed a significant positive correlation with altitude while all others exhibited negative (but non-significant) correlation with it. The study revealed that the chemical properties affect and are reciprocally affected by forest structure and composition and that N rich soils of higher altitudes are best for the growth and development of forests.

Trace element levels and selenium uptake in cereals grown in lower Austria

  • Sager M.;Hoesch J.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.479-492
    • /
    • 2003
  • Wheat, barley, rye, and maize were grown in field and pot experiments at various non-contaminated soils in order to establish uptake rates for added selenate, and to find baseline concentrations for various soil types. Edible parts (grains) and stalks of the crops were analyzed separately for Se, as well as for Ca, Cu, Fe, Mn, P, S, and Zn. The addition of Na-selenate in admixture with the NPK 20:8:8 fertilizer had no influence on the composition of the other elements investigated. The proportions of added nitrate: selenate, and sulfate:selenate were kept constant. The Se- uptake rate differed among the cereals tested, it was highest for winter wheat. Utilization of added Se in the field ranged from $0,4-4,7\%$, and and in the pots from $3,3-5,4\%$, it was markedly lower in clay soil. Whereas P and Zn were preferably found in the grains, Ca-Fe-Mn-S got enriched in the stalks. For the fields, the location had some influence upon Fe, Mn, and Zn, whereas it was not important for P, S, Cu, and strikingly, Ca. Pot and field experiments on similar soils led to different results, except for P and S. Maize (whole grains) was significantly lower in Ca, Cu, and Mn, and might even cause trace element deficiencies, if exclusively fed. Few correlations between the trace elements investigated led to the conclusion that most element contents were governed by plant metabolism. Variations of mobile Fe in the soils were balanced by uptake into the stalks. The data are compared with data from other presumably non-contaminated sites.

  • PDF

Effect of soil physical properties on nitrogen leaching during sesame (Sesamum indicum L.) cultivation under lysimeter conditions

  • Chan-Wook Lee;Jung-Hun Ok;Yang-Min Kim;Yo-Sung Song;Hye-Jin Park;Byung-Keun Hyun;Ye-Jin Lee;Taek-Keun Oh
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.379-387
    • /
    • 2022
  • A large amount of the mineral nitrogen is necessary for crop growth. With the use of nitrogen fertilizers, agricultural yield has increased during the last few decades. However, at the same time, nitrate from the cultivated land can be a source of environmental pollution, especially in water systems. For nitrogen management, it is necessary to analyze the pattern of nitrogen movement in soil. In this study, nitrogen leaching in upland soils was evaluated using undisturbed lysimeters with different soil textures during sesame cultivation. The soil texture of the lysimeters was clay loam (Songjung series) and sandy loam (Sangju series) soils. Sesame was cultivated from May 25 to August 24 in 2020. The standard amount of NPK fertilizer (N-P2O5-K2O = 2.9-3.1-3.2 kg·10 a-1) was applied before sowing. The amount of nitrogen leaching was calculated by multiplying the nitrogen (NO3-N + NH4-N) concentration and the amount of water drained below 1.5 m soil depth. The water was drained through percolation into macropores in the clay loam lysimeter. In contrast, in the sandy loam lysimeter, water drained more slowly than in the clay loam lysimeter. There was a slight difference in the total amount of leachate during the cultivation period, but the amount of nitrogen leaching was high in sandy loam soil. During the sesame cultivation period, the amount of nitrogen leaching from clay soil was 5.64 kg·10 a-1, and 10.70 kg·10 a-1 for sandy soil. We found that there was a difference in leaching depending on the soil physical characteristics. Therefore, it is necessary to consider the characteristics of soil to evaluate the leaching of nitrogen.

The evaluation of Spectral Vegetation Indices for Classification of Nutritional Deficiency in Rice Using Machine Learning Method

  • Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.88-88
    • /
    • 2022
  • Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.

  • PDF

Changes of Physical Properties of Soils by Organic Material application (유기성 물질 시용에 따른 농경지 토양물리성 변화 연구)

  • Kim, Lee-Yul;Cho, Hyun-Jun;Han, Kyung-Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.304-314
    • /
    • 2004
  • The objective of this study was to investigate the effect of organic materials (compost, straw, green manure, pig manure, seed production oil cake, and industrial by products including municipal sewage sludge, industrial sewage sludge, leather processing sludge, and alcohol fermentation processing sludge) on physical properties of soils in seven paddy and four upland fields with differential soil textures, sandy loam, loam, or clay loam, etc. The investigated physical parameters were bulk density (BD), air permeability (AP), macroporosity, hardness, shear resistance, frictional resistance, water stability aggregate (WSA), and Middleton's dispersion ratio. Except for coarse sandy loam field with weak structure, a decrease in BD and shear resistance, and an increase in macroporosity and AP in plots with applying organic materials compared to plots without applying organic materials appeared. In upland fields, the positive effect of organic materials on WSA, BD, and air permeability was higher than in paddy fields. The combined plot of NPK and compost had lower BD, hardness, and shear resistance, and higher macroporosity and WSA than plot with compost. Green manure had higher positive effect on physical properties of soils compared to other organic materials and the extent of positive effect had no significant correlation with soil organic matter content. Of industrial byproducts applied in coarse sandy loam soil under upland condition, municipal sewage sludge and pig manure compost had higher effect on increase of WSA than leather processing sludge and alcohol fermentation processing sludge. Unlike WSA, there were no significant differences between industrial byproduct types in other physical properties. in silty clay loam soil under the upland condition, straw had more positive effect on soil physical parameters than hairy vetch and pig manure. Therefore, different organic materials had differently active effect on physical parameters depending on types of soil and land use. Especially, it could be thought that well-decomposed organic materials have the advantage of an increase in organic matter content, while coarse organic materials of an increase in WSA.

Synthesis of Artificial Zeolite from Fly Ash for Preparing Nursery Bed Soils and the Effects on the Growth of Chinese Cabbage (석탄회(石炭灰)를 이용한 육묘(育苗) 상토용(床土用) 인공(人工) 제올라이트의 제조와 배추 생육에 미치는 효과(效果))

  • Kim, Yong-Woong;Lee, Hyun-Hee;Yoon, Chung-Han;Shin, Bang-Sup;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • To reduce the environmental contamination and to utilize fly ash massively produced from the coal power plant every year, we synthesized the artificial zeolite using fly ash treated with alkaline, and then analyzed the mineralogical and morphological properties by X-ray, IR, and SEM. The amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed by the fly ash and the artificial zeolite were determined with reaction time, amount of adsorbate used, ion concentrations. The results obtained from the pot experiments packed with the top soil, amended with granulated artificial zeolite which was made by treatment of 4% polyvinylalcohol, showed that CEC of the artificial zeolite was $257.7cmol^+kg^{-1}$, that was almost 36 times greater than that of fly ash. The ratio of $SiO_2/Al_2O_3$ decreased but the amount of Na increased. The physico-chemical properties analyzed by X-ray, IT, and SEM represented that the artificial zeolite synthesized had a similar morphological structure to that of the natural zeolite. The structures of the artificial zeolite had a significantly enlarged surface having a lot of pores, while the fly ash looked like spherical smooth shape with having not pores on the surface. Thus, the artificial zeolite was successfully synthesized. The results of adsorption isotherms of fly ash and artificial zeolite showed that the amount of $NH_4{^+}$, $K^+$, and $H_2PO_4{^-}$ adsorbed increased as the equilibrium concentration increased, while $NH_4{^+}$ was strongly adsorbed on the surface of fly ash and artificial zeolite than that of $K^+$. The most distinctive growth of Chinese cabbage was found from the top soil(NPK + soils + 20% of granulated artificial zeolite + 5% of compost). Therefore, we concluded that one of the most effective methods to effectively recycle a fly ash was to make the artificial zeolite as we did in this experiment.

  • PDF