Journal of the Institute of Electronics Engineers of Korea TC
/
v.45
no.7
/
pp.9-16
/
2008
For the efficient routing on a Sensor Network, one may consider a deployment problem to interconnect the sensor nodes optimally. There is an analogous theoretic problem: the Steiner Tree problem of finding the tree that interconnects given points on a plane optimally. One may use the approximation algorithm for the problem to find out the deployment that interconnects the sensor nodes almost optimally. However, the Steiner Tree problem is to interconnect mathematical set of points on a Euclidean plane, and so involves particular cases that do not occur on Sensor Networks. Thus the approach of using the algorithm does not make a proper way of analysis. Differently from the randomly given locations of mathematical points on a Euclidean plane, the locations of sensors on Sensor Networks are assumed to be physically dispersed over some moderate distance with each other. By designing an approximation algorithm for the Sensor Networks in terms of that physical property, one may produce the execution time and the approximation ratio to the optimality that are appropriate for the problem of interconnecting Sensor Networks.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.3
/
pp.1164-1183
/
2019
The rapid development of cloud computing and high requirements of operators requires strong support from the underlying Data Center Networks. Therefore, the effectiveness of using resources in the data center networks becomes a point of concern for operators and material for research. In this paper, we discuss the online virtual-cluster provision problem for multiple tenants with an aim to decide when and where the virtual cluster should be placed in a data center network. Our objective is maximizing the total revenue for the data center networks under the constraints. In order to solve this problem, this paper divides it into two parts: online multi-tenancy scheduling and virtual cluster placement. The first part aims to determine the scheduling orders for the multiple tenants, and the second part aims to determine the locations of virtual machines. We first approach the problem by using the variational inequality model and discuss the existence of the optimal solution. After that, we prove that provisioning virtual clusters for a multi-tenant data center network that maximizes revenue is NP-hard. Due to the complexity of this problem, an efficient heuristic algorithm OMS (Online Multi-tenancy Scheduling) is proposed to solve the online multi-tenancy scheduling problem. We further explore the virtual cluster placement problem based on the OMS and propose a novel algorithm during the virtual machine placement. We evaluate our algorithms through a series of simulations, and the simulations results demonstrate that OMS can significantly increase the efficiency and total revenue for the data centers.
Facility location problem is an important subject in many areas of modern business environment. In this paper, we deal with uncapacitated and multi-period facility location problem where the object is a maximization of total profit within predetermined cost. We assume that all demand have to be met. Particularly, we represent various types of customer based on four well-known urban spatial structures to represent a spread of customers. Those are concentric zone model, sector model, multiple nuclei model and star model respectively. We apply to the genetic algorithm to simulate a large scaled problem and develop simulator. We analyze both optimal numbers and locations of facilities for each urban structure. Furthermore, we examine the appropriate time to further expansion of the facilities in the planning horizon. The experimental results show that the developed algorithm can be applied effectively to the facility location problem in the various types of urban area.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.22
no.3
/
pp.185-191
/
2022
This paper proposed a division algorithm of performance complexity $O{\frac{n(n+1)}{2}}$ for a change-making problem(CMP) in which polynomial time algorithms are not known as NP-hard problem. CMP seeks to minimize the sum of the xj number of coins exchanged when a given amount of money C is exchanged for cj,j=1,2,⋯,n coins. Known polynomial algorithms for CMPs are greedy algorithms(GA), divide-and-conquer (DC), and dynamic programming(DP). The optimal solution can be obtained by DP of O(nC), and in general, when given C>2n, the performance complexity tends to increase exponentially, so it cannot be called a polynomial algorithm. This paper proposes a simple algorithm that calculates quotient by dividing upper triangular matrices and main diagonal for k×n matrices in which only j columns are placed in descending order of cj of n for cj ≤ C and i rows are placed k excluding all the dividers in cj. The application of the proposed algorithm to 39 benchmarking experimental data of various types showed that the optimal solution could be obtained quickly and accurately with only a calculator.
As the global market becomes more competitive, manufacturing industries face relentless pressure caused by a growing tendency of greater varieties of products, shorter manufacturing cycles and more sophisticated customer requirements. Efficient and effective supplier selection and order allocation decisions are, therefore, important decisions for a manufacturer to ensure stable material flows in a highly competitive supply chain, in particular, when customers are willing to accept products with less desirable product attributes (e.g., color, delivery date) for economic reasons. This paper attempts to solve optimally the challenging problem of supplier selection and order allocation, taking into consideration the customer flexibility for a manufacturer producing multi-products to satisfy the customers' demands in a multi period planning horizon. A new mixed integer programming model is developed to describe the behavior of the supply chain. The objective is to maximize the manufacturer's total profit subject to various operating constraints of the supply chain. Due to the complexity and non-deterministic polynomial-time (NP)-hard nature of the problem, an improved genetic approach is proposed to solve the problem optimally. This approach differs from a canonical genetic algorithm in three aspects: a new selection method to reduce the chance of premature convergence and two problem-specific repair heuristics to guarantee feasibility of the solutions. The results of applying the proposed approach to solve a set of randomly generated test problems clearly demonstrate its excellent performance. When compared with applying the canonical genetic algorithm to locate optimal solutions, the average improvement in the solution quality amounts to as high as ten percent.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.6
/
pp.3046-3070
/
2017
Nowadays, the utilization of multiprocessor environments has been increased due to the increase in time complexity of application programs and decrease in hardware costs. In such architectures during the compilation step, each program is decomposed into the smaller and maybe dependent segments so-called tasks. Precedence constraints, required execution times of the tasks, and communication costs among them are modeled using a directed acyclic graph (DAG) named task-graph. All the tasks in the task-graph must be assigned to a predefined number of processors in such a way that the precedence constraints are preserved, and the program's completion time is minimized, and this is an NP-hard problem from the time-complexity point of view. The results obtained by different approaches are dominated by two major factors; first, which order of tasks should be selected (sequence subproblem), and second, how the selected sequence should be assigned to the processors (assigning subproblem). In this paper, a hybrid proposed approach has been presented, in which two different artificial ant colonies cooperate to solve the multiprocessor task-scheduling problem; one colony to tackle the sequence subproblem, and another to cope with assigning subproblem. The utilization of background knowledge about the problem (different priority measurements of the tasks) has made the proposed approach very robust and efficient. 125 different task-graphs with various shape parameters such as size, communication-to-computation ratio and parallelism have been utilized for a comprehensive evaluation of the proposed approach, and the results show its superiority versus the other conventional methods from the performance point of view.
Hong Jung-Sik;Jang Jae-Song;Kim Ji-Pyo;Lie Chang-Hoon;Lee Jin-Seung
Journal of the Korean Operations Research and Management Science Society
/
v.30
no.3
/
pp.119-135
/
2005
Design of location erea(LA) in a cellular network is to partition the network into clusters of cells so as to minimize the cost of location updating and paging. Most research works dealing with the LA design problem assume that the call. arrival rate and mobile flow rate are fixed parameters which can be estimated independently. In this aspect, most Problems addressed so far are deterministic LA design problems(DLADP), known to be NP hard. The mobile flow and call arrival rate are, however, varying with time and should be treated simultaneously because the call arrival rate in a cell during a day is influenced by the change of a population size of the cell. This Paper Presents a new model on IA design problems considering the time-dependent call arrival and mobile flow rate. The new model becomes a stochastic LA design problem(SLADP) because It takes into account the possibility of paging waiting and blocking caused by the changing call arrival rate and finite paging capacity. Un order to obtain the optimal solution of the LA design problem, the SIADP is transformed Into the DLADP by introducing the utilization factor of paging channels and the problem is solved iteratively until the required paging quality is satisfied. Finally, an illustrative example reflecting the metropolitan area, Seoul, is provided and the optimal partitions of a cell structure are presented.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.11
/
pp.3876-3895
/
2014
Recently, Heterogeneous Network (HetNet) with Coordinated Multi-Point (CoMP) scheme is introduced into Long Term Evolution-Advanced (LTE-A) systems to improve digital services for User Equipments (UEs), especially for cell-edge UEs. However, Radio Resource Management (RRM), including Resource Block (RB) scheduling and Power Allocation (PA), in this scenario becomes challenging, due to the intercell cooperation. In this paper, we investigate the RRM problem for downlink transmission of HetNet system with Joint Processing (JP) CoMP (both joint transmission and dynamic cell selection schemes), aiming at maximizing weighted sum data rate under the constraints of both transmission power and backhaul capacity. First, joint RB scheduling and PA problem is formulated as a constrained Mixed Integer Programming (MIP) which is NP-hard. To simplify the formulation problem, we decompose it into two problems of RB scheduling and PA. For RB scheduling, we propose an algorithm with less computational complexity to achieve a suboptimal solution. Then, according to the obtained scheduling results, we present an iterative Karush-Kuhn-Tucker (KKT) method to solve the PA problem. Extensive simulations are conducted to verify the effectiveness and efficiency of the proposed algorithms. Two kinds of JP CoMP schemes are compared with a non-CoMP greedy scheme (max capacity scheme). Simulation results prove that the CoMP schemes with the proposed RRM algorithms dramatically enhance data rate of cell-edge UEs, thereby improving UEs' fairness of data rate. Also, it is shown that the proposed PA algorithms can decrease power consumption of transmission antennas without loss of transmission performance.
Journal of the Korea Institute of Information and Communication Engineering
/
v.11
no.7
/
pp.1318-1324
/
2007
TSP(Traveling Salesman Problem) is a problem finding out the shortest distance out of many courses where given cities of the number of N, one starts a certain city and turns back to a starting city, visiting every city only once. As the number of cities having visited increases, the calculation rate increases geometrically. This problem makes TSP classified in NP-Hard Problem and genetic algorithm is used representatively. To obtain a better result in TSP, various operators have been developed and studied. This paper suggests new method of population initialization and of sequential transformation, and then proves the improvement of capability by comparing them with existing methods.
Kim, Nam-Ju;Kim, Yong-Jin;Kho, Seung-Young;Chon, Kyung-Soo
Journal of Korean Society of Transportation
/
v.26
no.6
/
pp.103-112
/
2008
Implementing hub networks in logistics is generally attractive and effective because of cost savings derived from economies of scale on network transportation, and objective of the hub network design problem is to decide optimal hub locations, and the transportation route of each origin-destination pair. This problem is generally a NP-complete problem not to solve easily, and it is almost impossible to find optimal solutions considering the big-sized network within a reasonable time. This research tried to find optimal logistics strategy in the given big-sized real network and the freight origin-destination data. The objective function, which was proposed by Honor and O'kelly (2001), that rewards economies of scale on network links with increase of transportation volumes, is applied. This thesis proposed the optimal hub network of korea within a reasonable time based on engineering approaches. And it is expected that this thesis can contribute to plan freight policies which can improve to have competitive power in the level of a company or nation by reducing logistic costs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.