• Title/Summary/Keyword: NOxOUT

Search Result 314, Processing Time 0.022 seconds

A Study on the Characteristic and Droplet Uniformity of Spray Injection to Exhaust Gas Flow from Urea Solution Injector (Urea 수용액의 배기가스 유동장내 분무 특성과 분무 균일도에 관한 연구)

  • Oh, Jung-Mo;Cha, Won-Sim;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • Diesel engines can produce higher fuel efficiency and lower $CO_2$ emission, they are subject to ever more stringent emission regulation. However, there are two major emission concerns fo diesel engines like such as particulate matter (PM) and nitrogen oxides (NOx). Moreover, it is not easy to satisfy the regulations on the emission of NOx and PM, which are getting more strengthened. One of the solutions is to apply the new combustion concept using multistage injection such as HCCI and PCCI. The other solution is to apply after-treatment systems. For example, lean NOx trap catalyst, Urea-SCR and others have various advantages and disadvantages Especially, Urea-SCR system have advantages such as a high conversion efficiency and a wide operation conditions. Hence the key factor to implementation of Urea-SCR technology, good mixing of urea(Ammonia) and gas, reducing Ammonia slip. Urea mixer components are required to facilitate evaporation and mixing because the liquid state of urea poses significant barriers for evaporation, and the distance to mixer is the most critical that affect mixer performance. In this study, to find out the distance from injector to mixer and simulation factor, a laser diagnostics and high speed camera are used to analyze urea injector spray characteristics and to present a distribution of urea solution in transparent manifold In addition, Droplet Uniformity Index is calculated from the acquired images by using image processing method to clarify the distribution of spray.

An Effect in of the Bio-oil as an Alternative Fuel on the Performance of Diesel Engine (Bio-oil이 디젤기관의 기관성능에 미치는 영향)

  • Cho, Ki-Hyon;Chung, Hyung-Kil;Kang, Hyung-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.11-19
    • /
    • 2001
  • This study was carried out to investigate the feasibility of the used frying oil as a bin-oil which was one of the alternative fuel for diesel engine. From tests of engine performance, it was shown that the bio-oil and blends and the sufficient potential as alternative fuels of diesel engine except NOx and Smoke emission.

  • PDF

The Characteristics of Dust Removal in Flue Gas by the Plasma of Impulse Streamer Corona (충격식 코로나 방전 플라즈마를 이용한 배연가스로부터 먼지제거에 대한 특성)

  • 김은호
    • Journal of Environmental Science International
    • /
    • v.12 no.12
    • /
    • pp.1261-1267
    • /
    • 2003
  • On the basis of the distribution of particle size measured by laser diffraction spectrometers, this research was carried out to investigate the characteristics of mist removal with the change of operating condition in the plasma reactor of impulse streamer corona. The operating parameters in this experiment were power of impulse streamer corona, gas velocity, impulse generation time, gas temperature, and SOx/NOx concentration. The collection efficiency T(d) was estimated by the distribution of particle size in the collection zone through the advanced model.

Test Methods on Development of Low Emission Gas Turbine Combustor (저공해 연소기 시험기술)

  • Kim, Hyung-Mo;Choi, Young-Ho;Kim, Dong-Sik;Park, Poo-Min
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.29-34
    • /
    • 2007
  • On the stage of combustor development process, many aerodynamic and combustion characteristics are found out not by only ideal design concept but by only useful tests which are top confidentiality of technically advanced engine development companies, RR and GE, etc. In this study, test techniques of one of that company are analysed and described about some unique tests for test low emission combustors.

  • PDF

The Effect of Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine on Emissions under Partial Loads Conditions (부분부하에서 커먼레일 과급 디젤엔진의 VGT와 EGR 제어가 배출물에 미치는 영향)

  • Jeong, Soo-Jin;Chung, Jae-Woo;Kang, Jeong-Ho;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.6
    • /
    • pp.151-158
    • /
    • 2007
  • The static and dynamic behaviour of VGT and EGR systems has a significant impact on overall engine performance, fuel economy and exhaust emissions. This is because they define the state and composition of the air charge entering the engine. This work focused on the effect of the aperture ratio of VGT and EGR on the emission and flow characteristics under partial loads conditions. The investigation carried out using 2 liter PCCI 4 cylinder diesel engine with VGT and EGR. The result of this study shows that smoke increases with increasing EGR rate and NOx decreases with increasing EGR rate. It was also found that the residual gas contents greatly impact on soot emission under partial load condition. Finally, it can be concluded that VGT and EGR aperture ratio can greatly impact not only on soot and NOx but also air charging.

Investigation of Combustion Strategy for Commercialization of Low Temperature Diesel Combustion Engine (저온연소엔진 실용화를 위한 연소전략에 대한 연구)

  • Shim, Euijoon;Han, Youngdeok;Shin, Seunghyup;Kim, Duksang;Kwon, Sangil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.6
    • /
    • pp.120-127
    • /
    • 2014
  • Robustness and controllability are the key factors in internal combustion engine commercialization. This study focuses on the combustion strategy to commercialize the low temperature diesel combustion technology. Various LTC combustion methods such as PPCI, MK and highly diluted mixing controlled LTC were conducted on 6.0L heavy duty diesel engine. To find the best feasible LTC strategy, emission level, fuel consumption and combustion safety during the combustion mode change were considered. Experiments were carried out under various engine operating conditions; engine speed & load, EGR level, injection timing. Finally, this study suggests realizable LTC combustion strategy; moderate EGR level and slight early injection are possible to considerably lower PM, NOx emission and expand LTC operating range up to 50% load without CO and HC emission.

Comparison of combustion characteristics between esterified and non-esterified bio-diesel oil on CRDI diesel engine with turbocharger (전자 제어 분사식 과급디젤기관에서 에스테르화와 비에스테르화 바이오 디젤유의 연소 특성 비교)

  • Lee, Sang Deuk;Jung, Suk Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • In order to judge that non-esterified soybean oil could be used on diesel engine with electronic control of fuel injection system, The test of combustion performance using only gas oil, gas oil blended with esterified bio-diesel oil 5% and non-esterified soybean oil 5% were carried out. It is noticed that most performances of gas oil blended with esterified bio-diesel oil 5% and non-esterified 5% have similar characteristics but non-esterified bio-diesel oil 5% emitted smaller NOx, resulting from fuel NO.

A Study on Syngas Co-combustion Characteristics in a Heavy Oil Combustion System with Multi Burners (멀티 버너 중유 연소로에서의 합성 가스 혼합 연소 특성 연구)

  • Yang, Dong-Jin;Choi, Shin-Young;Yang, Won
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.1
    • /
    • pp.43-49
    • /
    • 2010
  • Co-combustion of syngas in an existing boiler can be one of the options for replacing conventional fossil fuel with alternative fuels such as waste and biomass. This study is aimed to investigate effects of syngas cocombustion on combustion characteristics and boiler efficiency. An experimental study was performed for a pilot-scale furnace with 4 oil burners. Tests were conducted with mixture-gas as a co-combustion fuel and heavy oil as a main fuel. The mixture-gas was composed of 15% CO, 7% $H_2$, 3% $CH_4$ and 75% $N_2$ for simulating syngas from air-blown gasification. And LHV of the mixture-gas was 890 kcal/$Nm^3$. Temperature distribution in the furnace and flue gas composition were measured for various heat replacement ratio by the mixture gas. Heat loss through the wall was also carried out through heat & mass balance calculation, in order to obtain informations related to boiler efficiency. Experimental results show that similar temperature distribution and flue gas composition can be obtained for the range of 0~20% heat replacement by syngas. NOx concentration is slightly decreased for higher heat replacement by the syngas because fuel NOx is decreased in the case. Meanwhile, heat loss is a bit decreased for higher heat replacement by the syngas, which implies that boiler efficiency can be a bit decreased when syngas co-combustion is applied to a boiler.

Study of Catalytic Ceramic Fiber Filter Elements for Hot Gas Filtration

  • Young Jin Choi;Min Jin Park;Jun Suk Hong;Min Sun Hong;Jae Chun Lee
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.284-287
    • /
    • 1999
  • CuO catalyst-coated alumino-silicate fiber filters were prepared for the simultaneous removal of particulate matter and gaseous contaminants such as NOx and SOx. Hot gas cleaning experiments similar to Shell UOP process other than the catalyst supporting materials were carried out between 300 and $500^{\circ}C$ for the evaluation of the gas removal efficiency of the catalytic filter. Experimental results showed that removel efficiency for $SO_2$ was greater than 99% in the temperature range 450~$500^{\circ}C$ and more than 90% of NO was collected between 350 and $370^{\circ}C$. It was found that the higher the CuO content, the higher the removal efficiency for $SO_2$. Removal efficiency for NO was more affected by the gas cleaning temperature than by the CuO content in the catalyst-filter.

  • PDF

An Experimental Study on NOx Degradation Efficiency and Physical Characteristics of Maximum Size 40 mm Porous Concrete (굵은골재 최대치수 40 mm 투수 콘크리트의 물리적 특성과 질소산화물 제거에 관한 연구)

  • Hong, Chong-Hyun;Kim, Moon-Hoon;Ryu, Seong-Pil;Choung, Kwang-Ok
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.431-438
    • /
    • 2006
  • The strength, water permeability, and photo-degradation efficiency of NOx of porous concrete with a new concept were studied in this paper. The porous concrete was comprised of coarse aggregate of maximum size 40 mm, cement, silica fume, water and air-entraining(AE) water reducing agent. The strength of porous concrete was strongly related to its matrix proportion and compaction energy. An experimental test was carried out to study the parameters of cement proportions and silica fume content for pavement applications of porous concrete which were paving a footpath, a bikeway, a parking lot, and a driveway. The regressed equations of relation-ships between compressive strength and flexural strength, and coefficient permeability and void ratios were indicated as y=7.69x+71.74 and $y=0.42e^{0.28x}$. A method of making an air purification-functioning road, which was spraying a mixture of a photocatalyst, cement, and water onto the surface of the road, was suggested.