• Title/Summary/Keyword: NOx distribution

Search Result 197, Processing Time 0.034 seconds

Temporal and Spatial Distributions of PM10, NOx and O3 around the Road (도로 주변의 PM10, NOx 및 O3의 시공간적 농도 분포 연구)

  • Kwon O-Yul;An Young-Sang
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.4
    • /
    • pp.440-450
    • /
    • 2006
  • PM10, NOx, and $O_3$ were measured at six locations, of which each three is horizontally and vertically distributed respectively, in an apartment complex around the heavily traffic road. Those were measured seven times a day with two hours interval starting from 8 o'clock in the morning for 15 days during May 2005 $\sim$ September 2005. PM10 and NOx showed high concentrations in rush hours while low concentrations in midday due to the direct emissions from automobiles in operation. Temporal variations of 01 showed very much similar trend appeared in normal urban atmospheres. The spatial distributions of PM10, NOx and $O_3$ showed that almost all of concentrations were higher in a row of Roadside > Surface at 130 m apart from the road > Surface at 230 m apart from the road > 3rd floor of apartment building > 15th floor of apartment building > 27th floor of apartment building. Model equations, which can project spatial concentration distributions, were constructed by combining the horizontal and the vertical linear regression equations derived from six mean values corresponding to six measuring locations. According to inter-comparison of PM10, NOx, and $O_3$ with the constructed model equations, concentration gradients were higher in a row of Vertical direction of NOx > Vertical direction of PM10 > Horizontal direction of NOx > Horizontal direction of PMIO > Vertical direction of $O_3$ > Horizontal direction of $O_3$. Why concentration gradient of particulate PM10 is lower than that of gaseous NOx is in question, and should be studied.

Study on Coal Combustion Characteristics with 1MWth Test Facility (1MWth 실험연소로를 이용한 석탄의 연소특성 연구)

  • Jang, Gil Hong;Chang, In Gab;Jeong, Seok Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1464-1472
    • /
    • 1999
  • Design and operation of $1MW_{th}$ pulverized coal combustion testing facility are described. Also the influence of air staging on NOx emission and burnout of coal flames was investigated in this facility. The test facility consisted of coal feeding system, firing system and flue gas treatment system. A top-fired externally air staging burner was adopted in order to avoid influence of gravity on the coal particles and for easy maintenance. Distribution of temperature and chemical species concentration of coal flames could be measured in vertical pass of furnace. Main fuel was pulverized (83.4% less than $80{\mu}m$) Australian high bituminous coal. From variety of test conditions, overall excess air ratio was selected at 1.2(20% excess air). Tho study showed that increasing the staged air resulted in lower NOx omission, and it was suggested to be more than 40% of the total combustion air for the substantial NOx reduction. Sufficient burnout was not achievable when NOx emission was less than 500ppm. Also, the amount of core air did not influence tho NOx reduction.

A Study on Swirl Flow and Combustion Characteristics of Air Staged Low NOx Burner (다단 공기 공급 저 NOx 버너의 선회유동 및 연소특성에 관한 실험적 연구 - 다단공기공급에 의한 연소특성(I) -)

  • Shin, Myung-Chul;Ahn, Je-Hyun;Kim, Se-Won
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.25-35
    • /
    • 2003
  • The objective of this research is to determine generally applicable design principles for the development of internally staged combustion devices. Utilizing a triple annulus combustor, the detailed combustion characteristics are studied. For this triple air staged combustor, the angular momentum weighted by it#s swirl number and air distribution ratio was observed to be the critical criteria of NOx emission. An internal recirculation zone which develops on the centerline of the flame immediately downstream of the burner entraps the fuel into a fuel rich eddy. Then sufficient heat must be transferred from the flame via radiation to the chamber heat transfer surfaces, such that the peak flame temperatures are suppressed when the second air is introduced. It is experimentally found out that the total NOx emission level in this type of burner is below 50ppm(3% Ref. O2) at optimum operating conditions.

  • PDF

A Study on the Injection Characteristics of Urea Solution to Improve deNOx Performance of Urea-SCR Catalyst in a Heavy Duty Diesel Engine (대형 디젤 엔진용 요소분사 SCR촉매의 deNOx 성능향상을 위한 요소수용액의 분사특성 연구)

  • Jeong, Soo-Jin;Lee, Chun-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.165-172
    • /
    • 2008
  • Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for deNOx of stationary diesel engines. In the case of the SCR-catalyst a non-uniform velocity and $NH_3$ profile will cause an inhomogeneous conversion of the reducing agent $NH_3$, resulting in a local breakthrough of $NH_3$ or increasing NOx emissions. Therefore, this work investigates the effect of flow and $NH_3$ non-uniformities on the deNOx performance and $NH_3$ slip in a Urea-SCR exhaust system. From the results of this study, it is found that flow and $NH_3$ distribution within SCR monolith is strongly related with deNOx performance of SCR catalyst. It is also found that multi-hole injector shows better $NH_3$ uniformity at the face of SCR monolith face than one hole injector.

Soot and NOx Emissions in Laminar Diffusion Flames: Effects of Air-Side versus Fuel-Side Diluent Addition (층류 확산화염에서의 매연과 질소산화물의 배출특성 : 공기측/연료측 희석제 첨가에 따른 영향)

  • Lee, Jong-Ho;Eom, Jae-Ho;Park, Chul-Woong;Jun, Chung-Hwan;Jang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Present study has been conducted to see the relative effects of adding N: to fuel-side and air-side on flame structure, soot formation and NOx emissions. Experiments were carried out to ascertain to what degree chemical kinetics and/or molecular transport effects can explain the differences in soot formation and NOx emission by studying laminar diffusion flames. Direct photograph was taken to see the flame structure. CARS techniques was used to get the flame temperature profiles. And spatial distribution of soot could be obtained by PLII method. CHEMKIN code was also used to estimate the global residence time to predict NOx emissions at each condition. Results from these studies indicate that fuel-side dilution is more effective than air-side dilution in view of NOx emissions. However, air-side dilution shows greater effectiveness over fuel-side dilution in soot formation. And turbulent mixing and heat transfer problems were thought to be considered in practical applications.

Numerical Simulation for Flow Optimization of De-NOx Selective Catalytic Reactor (배가스 탈질 설비의 유동해석 사례)

  • Go, Young-Gun;Ryu, Chang-Kook;Choi, Sang-Min
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.99-105
    • /
    • 2001
  • For the design of selective catalytic reactors of NOx by $NH_3$, engineering approach can be performed to determine the reactor shape, mixing device and $NH_3$ injection system. This study shows the optimization of guide vanes to improve the flow pattern near the catalyst layer of SCR in a untility boiler. By varying their spacings and shapes, flow performance of guide vanes was analyzed to achieve an uniform velocity distribution which increases the NOx convesion efficiency, and a flow direction normal to the layer which minimises the erosion by the dust in the flue gas. Including these results, experimental and numerical studies for the SCR design were discussed.

  • PDF

An Combustion Diagnosis Using Optical Measurement in D. I Diesel Engine with Dual Fuel Stratified Injection System (이종연료 층상분사를 적용한 디젤엔진에서 광 계측을 이용한 연소해석)

  • An, H.C.;Kang, B.M.;Yeom, J.K.;Chung, S.S.;Ha, J.Y.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.31-37
    • /
    • 2002
  • In previous study, diesel-methanol stratified injection system is manufactured and applied to a D.I. diesel engine in order to realize combustion improvement using methanol, which is oxygenated fuel with large latent heat. We know that NOx and soot is reduced by stratified injection of diesel fuel-methanol. Therefore, in the present study, combustion diagnosis using optical measurement is tried to make clear effect of methanol on simultaneous reduction of NOx and soot. Two-color method is used to measure flame temperature and KL value, which is approximately proportional to the soot consentration along the optical path. Laser induced scattering method was used to measure distribution of soot at two dimensional area. Also, it is compared exhaust characteristics of NOx and soot with results of optical measurement.

  • PDF

Premixed VIStA Burner for an Once-Through Type Boiler (관류보일러를 위한 예혼합 VIStA 버너 개발)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1013-1018
    • /
    • 2008
  • Vortex Inertial Staged Air (VIStA) burner for an once-through type boiler has been restored to the original premixed type to reduce nitrogen oxide (NOx) emission. The premixed version yields additional de-NOx effect by 20 ppm. The flame is formed closer to the wall at the 1st stage combustion chamber compared with the non-premixed one. The combustion characteristics are more sensitive to the air distribution for the premixed type, which necessitates proper optimization.

  • PDF

An Experimental Study for the Construction of Photocatalytic Method Concrete Road Structure (광촉매 콘크리트 도로 구조물의 효율적 시공방법에 대한 실험적 연구)

  • Hong, Sung Jae;Lee, Seung Woo
    • International Journal of Highway Engineering
    • /
    • v.15 no.6
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES : About 35% of air pollutant is occurred from road transport. NOx is the primary pollutant. Recently, the importance of NOx removal has arisen in the world. $TiO_2$ is very efficient for removing NOx by photocatalytic reaction. The mechanism of removing NOx is the reaction of photocatalysis and solar energy. Therefore, $TiO_2$ in concrete need to be contacted with solar radiation to be activated. In general, $TiO_2$ concrete are produced by substitute $TiO_2$ as a part of concrete binder. However, 90% of $TiO_2$ in the photocatalysis can not contacted with the pollutant in the air and solar radiation. Coating and penetration method are attempted as the alternative of mixing method in order to locate $TiO_2$ to the surface of structure. METHODS : The goal of this study was to attempt to locate $TiO_2$ to the surface of concrete, so we can use the concrete in pavement construction. The distribution of $TiO_2$ along the depth were confirmed by basing on the comparison of $TiO_2$ compare by using the EDAX(Energy Dispersive X-ray Spectroscopy). RESULTS : $TiO_2$ were distributed within 3mm from concrete surface. This distribution of $TiO_2$ is desirable, since the $TiO_2$ induce photocatalysis are located to where they can be contacted with the air pollutant and solar radiation. CONCLUSIONS : Nano size $TiO_2$ is easily penetration in the top 3mm of concrete surface. By the penetration $TiO_2$ concrete can be produced with the use of only 10% of $TiO_2$, by comparing the mixing types.

Combustion Characteristics of a VIStA Burner Dividing Flame in a Once-Through Type Boiler (관류보일러에서 화염분할 VIStA 버너의 연소특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.413-418
    • /
    • 2012
  • A modified VIStA (Vortex Inertial Staged Air) burner has been developed and applied to a once-through type boiler. The secondary air is supplied through a swirler instead of nozzles, which stabilizes the flame and reduces carbon monoxide (CO) emissions. However, the modification increases the emission of nitrogen oxides (NOx). To balance emissions of the two pollutants, a divided flame was adopted. An air damper was installed to control the distribution of air to each combustion chamber, and three types of flame dividers were studied. The effects of the air-fuel ratio and combustion load on the NOx formation were investigated. The divided flame was found to reduce the NOx emission up to 25%, while keeping the CO to less than 10 ppm.