• Title/Summary/Keyword: NOx Emissions

Search Result 729, Processing Time 0.037 seconds

Numerical Study on Characteristics of Mild Combustion (Mild Combustor의 연소특성 해석)

  • Kim, Gun-Hong;Kang, Sung-Mo;Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.215-222
    • /
    • 2003
  • Mild combustion or Flameless oxidation(FLOX) have been considered as one of the most prospective clean-combustion technologies to meet both the targets of high process efficiency and low pollutant emissions. A mild combustor with high air preheating and strong internal exhaust gas recirculation is characterized by relatively low flame temperature, low NOx emissions, no visible flame and no sound. In this study, the Steady Flamelet Approach has been applied to numerically analyze the combustion processes and NOx formation in the mild combustor. The detailed discussion has been made for the basic characteristics of mild combustor, numerical results and limitation of the present combustion modeling.

  • PDF

A Study on Effects of Exhaust Emissions with Oxygenated Fuel(DGM) and EGR Method in a Diesel Engine (함산소연료(DGM)와 EGR 방법이 디젤기관의 배기배출물에 미치는 영향에 관한 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1691-1698
    • /
    • 2003
  • In this paper, the combination effects of oxygen component in fuel and exhaust gas recirculation on the exhaust emissions have been investigated for a direct injection diesel engine. It is a kind of effective oxygenated fuel of diether group that the smoke emission of DGM(diethylene glycol dimethyl ether) blended fuel is reduced remarkably compared with commercial diesel fuel, that is, it can supply oxygen component sufficiently at higher loads and speeds in diesel engine. But, NOx emission of oxygenated fuel was increased compared with commercial diesel fuel. Also, the effects of exhaust gas recirculation(EGR) on the characteristics of NOx emission has been investigated. It was found that simultaneous reduction of smoke and NOx was achieved with oxygenated fuel(DGM 5vol-%) and cooled EGR method(10∼15%).

The Role of Large Scale Mixing and Radiation in the Scaling of NOx Emissions From Unconfined Flames

  • Newbold, Greg J.R.;Nathan, Graham J.;Nobes, David S.;Turns, Stephen R.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • Measurements of global emissions, flame radiation and flame dimensions are presented for unconfined turbulent-jet and precessing-jet diffusion flames. Precessing jet flames are characterised by increases in global flame radiation and global flame residence time for methane and propane fuels, however a strong dependency of the NOx emission indices on the fuel type exists. The fuel type dependence is considered to be because soot radiation is more effective than gas-radiation at reducing global flame temperatures relative to adiabatic flame temperatures and reducing the NO production rate.

  • PDF

A Study on the Characteristics of NOx and Smoke for Diesel Engine by Fuel (연료성상에 따른 디젤엔진의 질소산화물 및 스모크 배출특성에 관한 연구)

  • Nam, Jeong-Gil;Lee, Don-Chool;Han, Won-Hui;Park, Jeong-Dae;Kang, Dae-Sun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.145-146
    • /
    • 2006
  • The main objective of this research is to develop a system which will provide a more efficient fuel saying measure for the current marine products industry situation caused by the increased cost of oil. For that function, the developed system has been verified using the medium of blending oil known as the MF 30 class. As a result, MF 30 was confirmed meeting the International Standard for NOx emissions and content of Sulfur. Oil composition and soot level analysis showed that it is acceptable to use MF 30 class in condition of proper engine running operation and pre-refinery treatment.

  • PDF

Numerical studies for combustion processes and emissions in the DI diesel engines using EGR (EGR을 사용하는 직접분사식 디젤엔진의 연소과정 및 매연가스 배출특성에 대한 수치해석)

  • Kwon, Y.D.;Lee, J. C.;Kim, Y. M.;Kim, S. W.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.659-669
    • /
    • 1997
  • The effects of exhaust gas recirculation on diesel engine combustion and soot/NOx emissions are numerically studied. The primary and secondary atomization is modelled using the wave instability breakup model. Autoignition of a diesel spray is modelled using the Shell ignition model. Soot formation is kinetically controlled and soot oxidation is represented by a model which account for surface chemistry. The NOx formation is based on the extended Zeldovich NOx model. Effects of injection timing and concentration of $O_{2}$ and CO$_{2}$ on the pollutant formation and the combustion process are discussed in detail.

Combustion Characteristics and Exhaust Emissions in Spark-ignition Engine Using Gasoline-ammonia (가솔린 엔진에서 가솔린-암모니아 혼합 연료의 연소 및 배기 특성)

  • Ryu, Kyunghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.155-165
    • /
    • 2013
  • The effect of gaseous ammonia direct injection on the engine performance and exhaust emissions in gasoline-ammonia dual fueled spark-ignition engine was investigated in this study. Results show that based on the gasoline contribution engine power increases as the ammonia injection timing and duration is advanced and increased, respectively. However, as the initial amount of gasoline is increased the maximum power output contribution from ammonia is reduced. For gasoline-ammonia, the appropriate injection timing is found to range from 320 BTDC at low loads to 370 BTDC at high loads and the peak pressures are slightly lower than that for gasoline due to the slow flame speed of ammonia, resulting in the reduction of combustion efficiency. The brake specific energy consumption (BSEC) for gasoline-ammonia has little difference compared to the BSEC for gasoline only. Ammonia direct injection causes slight reduction of $CO_2$ and CO for all presented loads but significantly increases HC due to the low combustion efficiency of ammonia. Also, ammonia direct injection results in both increased ammonia and NOx in the exhaust due to formation of fuel NOx and ammonia slip.

EFFECT OF MIXTURE PREPARATION IN A DIESEL HCCI ENGINE USING EARLY IN-CYLINDER INJECTION DURING THE SUCTION STROKE

  • Nathan, S. Swami;Mallikarjuna, J.M.;Ramesh, A.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.543-553
    • /
    • 2007
  • It is becoming increasingly difficult for engines using conventional fuels and combustion techniques to meet stringent emission norms. The homogeneous charge compression ignition(HCCI) concept is being evaluated on account of its potential to control both smoke and NOx emissions. However, HCCI engines face problems of combustion control. In this work, a single cylinder water-cooled diesel engine was operated in the HCCI mode. Diesel was injected during the suction stroke($0^{\circ}$ to $20^{\circ}$ degrees aTDC) using a special injection system in order to prepare a nearly homogeneous charge. The engine was able to develop a BMEP(brake mean effective pressure) in the range of 2.15 to 4.32 bar. Extremely low levels of NOx emissions were observed. Though the engine operation was steady, poor brake thermal efficiency(30% lower) and high HC, CO and smoke were problems. The heat release showed two distinct portions: cool flame followed by the main heat release. The low heat release rates were found to result in poor brake thermal efficiency at light loads. At high brake power outputs, improper combustion phasing was the problem. Fuel deposited on the walls was responsible for increased HC and smoke emissions. On the whole, proper combustion phasing and a need for a well- matched injection system were identified as the important needs.

Impact of Test routes and Driving style on NOx emissions of Light-Duty Diesel Vehicle over Real Driving Emissions test (승용 경유 차량의 실제도로 주행 배출가스 시험에서 주행 경로와 운전 성향이 질소산화물에 미치는 영향)

  • Yu, Young Soo;Jeong, Jun Woo;Chon, Mun Soo;Cha, Junepyo
    • Journal of ILASS-Korea
    • /
    • v.24 no.2
    • /
    • pp.73-81
    • /
    • 2019
  • It is expected that the introduction of real-driving emission will strengthen the exhaust emission. However, various researches have been reported that real-driving emission has been influenced by factors such as characteristics of the test routes and driving characteristics for drivers. In order to reflect this effect, European Commission applied the concept of driving dynamics to prevent deliberately driving of excessive and acceleration over RDE test. The purpose of this study is to analyze the characteristics of exhaust emissions according to real-driving test in three test routes and driving style. As a result of the test, it was confirmed that when the same driver tested real-driving test under three test routes, it depends on the driving characteristics of the route. Also, RDE-NOx for driving style was that severe driving has been about 16 times higher than normal driving in KNUT route.

Water Injection/Urea SCR System Experimental Results for NOx Reduction on a Light Duty Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.394-403
    • /
    • 2008
  • The effects of water injection (WI) and urea injection for NOx on a 4-cylinder Direct Injection (DI) diesel engine were investigated experimentally. For water injection, it was installed at the intake pipe and the water quantity was controlled at the intake manifold and Manifold Air Flow (MAF) temperatures while the urea injection was located at the exhaust pipe and the urea quantity was controlled by NOx quantity and MAF. The effects of WI system, urea-SCR system and the combined system were investigated with and without exhaust gas recirculation (EGR). Several experiments were performed to characterize the urea-SCR system, using engine operating points of varying raw NOx emissions. The results of the Stoichiometric Urea Flow (SUF) and NOx map were obtained. In addition, NOx results were illustrated according to the engine speed and load. It is concluded that the NOx reduction effects of the combined system without the EGR were better than those with the EGR-based engine.

Combustion Characteristics of a VIStA Burner Dividing Flame in a Once-Through Type Boiler (관류보일러에서 화염분할 VIStA 버너의 연소특성)

  • Ahn, Joon;Kim, Hyouck-Ju;Choi, Kyu-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.4
    • /
    • pp.413-418
    • /
    • 2012
  • A modified VIStA (Vortex Inertial Staged Air) burner has been developed and applied to a once-through type boiler. The secondary air is supplied through a swirler instead of nozzles, which stabilizes the flame and reduces carbon monoxide (CO) emissions. However, the modification increases the emission of nitrogen oxides (NOx). To balance emissions of the two pollutants, a divided flame was adopted. An air damper was installed to control the distribution of air to each combustion chamber, and three types of flame dividers were studied. The effects of the air-fuel ratio and combustion load on the NOx formation were investigated. The divided flame was found to reduce the NOx emission up to 25%, while keeping the CO to less than 10 ppm.