• Title/Summary/Keyword: NO release

Search Result 1,535, Processing Time 0.03 seconds

Effects of Several Cardioactive Agents on the Regenerative $Ca^{++}$ Release in the Mechanically Disrupted Cardiac cells (심근에 작용하는 수종 약물이 쥐의 심근의 'Regenerative $Ca^{++}$ Release'에 미치는 영향)

  • Kang, Doo-Hee;Lee, Joong-Woo
    • The Korean Journal of Physiology
    • /
    • v.11 no.2
    • /
    • pp.9-16
    • /
    • 1977
  • The present experiment was conducted to see whether or not several cardioactive agents influence the 'regenerative $Ca^{++}$ release' in the mechanically disrupted cardiac cells. The mechanically disrupted cardiac cells were prepared by the method of Kerrick and Best from the ventricle of rat. The tension development of the disrupted cardiac cells was measured with a mechanoelectric transducer (RCA 5734). The results were summarized as follows 1) 2 mM caffeine enhanced the regenerative $Ca^{++}$ release, whereas 2 mM Procaine inhibited the $Ca^{++}$ release as reported by other investigators. 2) Epinephrine at concentrations of $10^{-7},\;10^{-6}\;and\;10^{-5}M$ increased the regenerative $Ca^{++}$ release significantly but showed a poor dose response on the $Ca^{++}$ release. 3) Propranolol showed no effect on the regenerative $Ca^{++}$ release when studied alone. Furthermore, it showed no antagonistic effect on an increased regenerative $Ca^{++}$ release induced by epinephrine. 4) Other cardioactive agents such as acetylcholine, ouabain, isoproterenol and c-AMP at concentrations of $10^{-6}M$ showed no effect on the regenerative $Ca^{++}$ release. From the above results, it may be concluded that the cardioactive actions of these agents are not related directly to the process of regenerative $Ca^{++}$ release.

  • PDF

Effect of slow-release Nitrogen fertilizers to reduce labor(1) Effect of slow-release fertilizers on yield of radish (노동력 절감을 위한 수효성 질소질비료 효과(I))

  • 김경제
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.1
    • /
    • pp.79-85
    • /
    • 1996
  • This experiment was carried out to investigate the effect of slow-release fertilizers on yield of radigh. Fertilizers were treated with CDU, MEISTER, Jobi Gohyungbok-hapbiryo, Kyungki Wonyebokbi 1ho, Kyungkibokbi Nojeok, Kyungki Jeonjakgo-hyungbokbi, Tradidtional manuring, and No maunring. Yields of radish were increased with slow-release fertilizers, CDU and MEISTER were effective to radish shoot, also. But analysis of chemical components of plants and soil were no difference. It was very effect to increase yields of radish, to reduce in number of supplementary manuring and laboring.

  • PDF

Effect of slow-release Nitrogen fertilizers to reduce labor Effect of slow-release fertilizers on yield of lettuce (노동력 절감의 수효성 질소질비료 효과(II)-상치의 수량에 미치는 영향-)

  • 김경제
    • Korean Journal of Organic Agriculture
    • /
    • v.5 no.2
    • /
    • pp.85-91
    • /
    • 1997
  • This experiment was carried out to investigate the effect of slow-release fertilizers on yield of lettuce. Fertilizers were treated with CDU, MEISTER, Jobi Gohyungbokhapbiryo, Kyungki Wonyebokbi 1ho, Kyungkibokbi Nojeok, Kyungki Jeonjakgohyungbokbi, Traditional manuring, and No manuring. Yields of Spinach was increased with slow-release fertilizers, also. But analysis of chemical components of plants and soil were no difference. It was very effect to increase yields of lettuce, to reduce in number of supplementary manuring and laboring.

  • PDF

The Removal of the Phosphorus by DNPAOs According to the Loading of the Influent NO3-N in Anoxic Zone (무산소조 NO3-N 농도 변화에 따른 DNPAOs에 의한 인 제거)

  • Kim, Hong-Tae;Kim, Kyeong-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1271-1277
    • /
    • 2007
  • This study was conducted to investigate the ratios of phosphorus release to COD uptake, phosphorus release to nitrate removal, and phosphorus uptake to phosphorus release by DNPAOs(denitrifying phosphate accumulating organisms). In case $I{\sim}IV$, influent 1 were fed with synthetic wastewater with influent 2 $NO_3^--N$ injection to anoxic zone and the case V were fed with municipal wastewater with side stream oxic zone instead of influent 2 $NO_3^--N$ injection. As a result, the ratio of phosphorus release to carbon uptake was increased in accordance with nitrate supply. The DNPAOs simultaneously took up phosphate and removed nitrate from the anoxic reactor. In case $I{\sim}IV$, with above 20 mg/L of sufficient $NO_3^--N$ supply, phosphate was taken up excessively by the DNPAOs in anoxic condition. The large amount of both uptake and release of phosphorus occurred above 20 mg/L of nitrate supply, achieving the ratio of phosphorus uptake to phosphorus release to be 1.05. In case V, phosphate luxury uptake was not occurred in system due to 6.98 mg/L of insufficient $NO_3^--N$ supply and the ratio of phosphorus uptake to phosphorus release was 0.98. Consequently, if nitrate as the electron acceptor was sufficient in anoxic zone, the ratio was found to be high.

Chitosan Increases the Release of Renal Dipeptidase from Porcine Renal Proximal Tubule Cells

  • Hyun Joong, Yoon;Kim, Young-Ho;Park, Sung-Wook;Lee, Hwanghee-Blaise;Park, Haeng-Soon
    • Animal cells and systems
    • /
    • v.7 no.4
    • /
    • pp.309-315
    • /
    • 2003
  • Renal dipeptidase (RDPase, membrane dipeptidase, dehydropeptidase 1, EC 3.4.13.19) has been widely studied since it was first purified from porcine kidney brush border membrane. It was reported that RDPase activity in urine samples of acute and chronic renal failure patients decreases. Nitric oxide (NO) is a highly reactive free radical involved in a number of physiological and pathological processes. NO is able to act in a dual mode, leading either to induction of apoptosis or to blunted execution of programmed cell death. NO inhibited the RDPase release from porcine renal proximal tubules, which could be blocked by L-NAME. Chitosan, the linear polymer of D-glucosamine in $\beta$(1\longrightarrow4) linkage, not only reversed the decreased RDPase release by NO but also increased NO production in the proximal tubule cells. The stimulatory effect of NO on RDPase release from proximal tubules in the presence of chitosan must be different from the previously proposed mechanism of RDPase release via NO signaling pathway. Chitosan stimulated the RDPase release in the proximal tubules and increased RDPase activity to 220% and 250% at 0.1% and 1%, respectively. RDPase release was decreased to about 40% in the injured proximal tubules and was recovered in proportion to the increase of chitosan. Chitosan may be useful in recovery of renal function from $HgCl_2$injury.

Nitric Oxide Synthase Inhibitor Decreases NMDA-Induced Elevations of Extracellular Glutamate and Intracellular $Ca^{2+}$ Levels Via a cGMP-Independent Mechanism in Cerebellar Granule Neurons

  • Oh, Sei-Kwan;Yun, Bong-Sik;Ryoo, In-Ja;Patrick P.McCaslin;Yoo, Ick-Dong
    • Archives of Pharmacal Research
    • /
    • v.22 no.1
    • /
    • pp.48-54
    • /
    • 1999
  • These studies were designed to examine the differential effect of nitric oxide (NO) and cGMP on glutamate neurotransmission. In primary cultures of rat cerebellar granule cells, the glutamate receptor agonist N-methyl-D-aspartate (NMDA) stimulates the elevation of intracellular calcium concentration ($[Ca^{2+}]_i$), the release of glutamate, the synthesis of NO and an increase of cGMP. Although NO has been shown to stimulate guanylyl cyclase, it is unclear yet whether NO alters the NMDA-induced glutamate release and ${[Ca^{2+}]}_i$ elevation. We showed that the NO synthase inhibitor, NG-monomethyl-L-arginine (NMMA), partially prevented the NMDA-induced release of glutamate and elevation of ${[Ca^{2+}]}_i$ and completely blocked the elevation of cGMP. These effects of NO on glutamate release and [Ca2+]i elevation were unlikely to be secondary to cGMP as the cGMP analogue, dibutyryl cGMP (dBcGMP), did not suppress the effects of NMDA. Rather, dBcGMP slightly augmented the NMDA-induced elevation of ${[Ca^{2+}]}_i$ with no change in the basal level of glutamate or ${[Ca^{2+}]}_i$. The extracellular NO scavenger hydroxocobalamine prevented the NMDA-induced release of glutamate providing indirect evidence that the effect of NO may act on the NMDA receptor. These results suggest that low concentration of NO has a role in maintaining the NMDA receptor activation in a cGMP-independent manner.

  • PDF

Role of Nitric Oxide Produced During Endotoxic Shock in Sympathetic Nervous Function (Endotoxin에 의해 생성된 혈관의 nitric oxide가 교감신경계에 미치는 영향)

  • 박관하
    • Toxicological Research
    • /
    • v.12 no.2
    • /
    • pp.195-201
    • /
    • 1996
  • Endotoxic shock causes death in humans and animals via extreme hypoperfusion of peripheral organs. A massive production of nitric oxide (NO) both from the endothelical cells and smooth muscle cells has been proposed as a possible mechanism in this process. Since NO attenuated the contractility to vasoconstricting agents such as norepinephrine (NE) by directly acting on the smooth muscle cells, this mechanism was considered mainly as a postsynaptic mechanism. In this research it was investigated whether NO, thus released, also participates in the presynaptic events for the regulation of vascular tone in endotoxic shock. The role of NO was studied by adding NO donors or NO synthase inhibitor $N^\omega $methyl-L-arginine (NMA) in stimulated sympathetic nerves of the mesenteric vascular bed and the Langendorff heart of rats. Sodium nitroprusside (SNP), an NO donor, reduced the pressor responses of isolated mesenteric artery either to electrical stimulation or exogenously administered phenylephrine (PE). In this mesentery, although neither agent influenced NE release, in the presence of the adrenergic $\alpha_2$-receptor antagonist yohimbine, elecrical stimulation-evoked NE release was augumented by SNP. In the heart SNP facilitated the NE release induced by electrical stimulation, while NMA had no effect. From these results it is proposed that there exists a local reflex phenomenon in the junction between the sympathetic nerve terminals and the smooth muscle of resistance blood vessels; by which sympathetic responses are reduced by NO at the postjunctional level while NO facilitates NE release contributing to augumentation of sympathetic tone. All these facts suggest that NO produced during endotoxic shock has dual effects: whereas NO blunts the vasoconstrictive activity of NE at the postsynaptic level, NO presynaptically facilitates the release of NE from sympathetic nerve terminals.

  • PDF

A Study on Release Characteristics of Lake Sediments under Oxic and Anoxic Conditions (호수 퇴적물의 호기 및 혐기조건에서의 용출 특성에 대한 연구)

  • Yoon, Mi-Hae;Hyun, Jun-Taek;Huh, Nam-Soo;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1003-1012
    • /
    • 2007
  • In this study, we analyzed the release differences for some critical pollution compounds according to the surrounding conditions in order to predict water quality due to the sedimental releases and the release characteristics at different sedimental locations in Lake Leewon, in Tae-An area. COD, nitrogens and phosphates were analyzed using the standard methods for water quality, based on high chloride ion concentration(greater than 2,000 ppm). For COD, the release rate increased in the anoxic basin but almost the same in the oxic basin. For $NH_3$-N, the release rate decreased in the oxic basin as you go A through C point meanwhile, for $NO_3$-N and T-N, the tendency was reversed because of nitrification of them. In the anoxic basin, the release rates of $NH_3$-N and $NO_3$-N went up with A through C path. However, the release rate of T-N was found to decrease. Also, for $PO_4$-P and T-P, the release rates in the oxic basin were lowest at B point mainly because the phosphates were at less released in the highly $O_2$ concentrated environment. In the anoxic reactor, $PO_4$-P was released similarly regardless of the sampling points. In summary, the release rates in the oxic reactor were greater than those in the anoxic reactor for COD and $NO_3$-N. For the other components, the anoxic basin generated the higher release rates.

Role of Nitric Oxide in Ischemia-evoked Release of Norepinephrine from Rat Cortex Slices (흰쥐 대뇌피질 절편에서 허혈에 의한 Norepinephrine 유리에 있어서 Nitric Oxide의 영향)

  • Eun, Young-Ah;Kim, Dong-Chan;Cho, Kyu-Park;Kim, Kee-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.6
    • /
    • pp.673-679
    • /
    • 1997
  • It has been generally accepted that glutamate mediates the ischemic brain damage, excitotoxicity, and induces release of neurotransmitters, including norepinephrine(NE), in ischemic milieu. In the present study, the role of nitric oxide(NO) in the ischemia-induced $[^3H]norepinephrine([^3H]NE)$ release from cortex slices of the rat was examined. Ischemia, deprivation of oxygen and glucose from $Mg^{2+}-free$ artificial cerebrospinal fluid, induced significant release of $[^3H]NE$ from cortex slices. This ischemia-induced $[^3H]NE$ release was significantly attenuated by glutamatergic neurotransmission modifiers. $N^G-nitro-L-arginine$ methyl ester(L-NAME), $N^G-monomethyl-L-arginine$ (L-NMMA) or 7-nitroindazole, nitric oxide synthase inhibitors attenuated the ischemia-evoked $[^3H]NE$ release. Hemoglobin, a NO chelator, and 5, 5- dimethyl-L-pyrroline-N-oxide(DMPO), an electron spin trap, inhibited $[^3H]NE$ release dose-dependently. Ischemia-evoked $[^3H]NE$ release was inhibited by methylene blue, a soluble guanylate cyclase inhibitor, and potentiated by 8-bromo-cGMP, a cell permeable cGMP analog, zaprinast, a cGMP phosphodiesterase inhibitor, and S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide generator. These results suggest that the ischemia-evoked $[^3H]NE$ release is mediated by NMDA receptors, and activation of NO system is involved.

  • PDF

Reoxygenation Stimulates EDRE(s) Release from Endothelial Cells of Rabbit Aorta

  • Suh, Suk-Hyo;Han, Jae-Jin;Park, Sung-Jin;Choi, Jai-Young;Sim, Jae-Hoon;Kim, Young-Chul;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.393-404
    • /
    • 1999
  • We have reported that hypoxia stimulates EDRF(s) release from endothelial cells and the release may be augmented by previous hypoxia. As a mechanism, it was hypothesized that reoxygenation can stimulate EDRF(s) release from endothelial cells and we tested the hypothesis via bioassay experiment. In the bioassay experiment, rabbit aorta with endothelium was used as EDRF donor vessel and rabbit carotid artery without endothelium as a bioassay test ring. The test ring was contracted by prostaglandin $F_{2a}\;(3{\times}10^{-6}\;M)$ which was added to the solution perfusing through the aorta. Hypoxia was evoked by switching the solution aerated with 95% $O_2/5%\;CO_2$ mixed gas to one aerated with 95% $O_2/5%\;CO_2$ mixed gas. Hypoxia/reoxygenation were interexchanged at intervals of 2 minutes (intermittent hypoxia). In some experiments, endothelial cells were exposed to 10-minute hypoxia (continuous hypoxia) and then exposed to reoxygenation and intermittent hypoxia. In other experiments, the duration of reoxygenation was extended from 2 minutes to 5 minutes. When the donor aorta was exposed to intermittent hypoxia, hypoxia stimulated EDRF(s) release from endothelial cells and the hypoxia-induced EDRF(s) release was augmented by previous hypoxia/reoxygenation. When the donor aorta was exposed to continuous hypoxia, there was no increase of hypoxia-induced EDRF(s) release during hypoxia. But, after the donor aorta was exposed to reoxygenation, hypoxia-induced EDRF(s) release was markedly increased. When the donor aorta was pretreated with nitro-L-arginine $(10^{-5}$ M for 30 minutes), the initial hypoxia-induced EDRF(s) release was almost completely abolished, but the mechanism for EDRF(s) release by the reoxygenation and subsequent hypoxia still remained to be clarified. TEA also blocked incompletely hypoxia-induced and hypoxia/reoxygenation-induced EDRF(s) release. EDRF(s) release by repetitive hypoxia and reoxygenation was completely blocked by the combined treatment with nitro-L-arginine and TEA. Cytochrome P450 blocker, SKF-525A, inhibited the EDRF(s) release reversibly and endothelin antgonists, BQ 123 and BQ 788, had no effect on the release of endothelium-derived vasoactive factors. Superoxide dismutase (SOD) and catalase inhibited the EDRF(s) release from endothelial cells. From these data, it could be concluded that reoxygenation stimulates EDRF(s) release and hypoxia/reoxygenation can release not only NO but also another EDRF from endothelial cells by the production of oxygen free radicals.

  • PDF