• Title/Summary/Keyword: NO/cGMP

Search Result 134, Processing Time 0.027 seconds

Nitric oxide(NO)-mediated relaxation of bovine retractor penis muscle (소 음경후인근의 Nitric oxide(NO) 매개성 이완)

  • Yang, Il-suk;Chang, Hee-jung;Kang, Tong-mook;Lee, Jang-hern
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.599-605
    • /
    • 1996
  • This study was designed to examine the mechanism of penile erection in adult bull by analyzing the responses of bovine proximal retractor penile muscle strips(BRP) to electtical field stimulation(EFS), exogenous nitric oxide(NO), NO synthesis precursor(L-arginine), NO synthase inhibitors(L-NAME, L-NMMA), guanylate cyclase inhibitor(methylene blue) and nonspecific potassium channel blocker(tetraethylammonium, TEA) treatments. Isometric tension of BRP was measured using physiograph. Results were summarized as follows: 1. EFS of nonadrenergic noncholinrgic(NANC) nerve in BRP produced frequency-dependent inhibitory responses to the contraction induced by co-treatment of epinephrine, guanethidine and atropine. The inhibitory responses to EFS were blocked by tetrodotoxin(TTX, $1{\mu}M$). 2. Treatment of L-NAME ($10,\;20{\mu}M$) inhibited the relaxation to EFS whereas L-NMMA ($100{\mu}M$) had no effect. 3. Treatment of NO($20,\;40{\mu}M$; as an acidified solution of $NaNO_2$) induced concentration-dependent relaxation whereas preincubation of TTX($1{\mu}M$) and L-NAME($20{\mu}M$) had no effect on the relaxation response. 4. L-arginine treatment(10mM) blocked the inhibitory effect of L-NAME($20{\mu}M$). 5. Pretreatment of methylene blue($40{\mu}M$) reduced the NANC-induced relaxation of BRP. 6. Tetraethylammonium(TEA, 80mM) reduced NANC relaxation. These results suggest that NO may act as a NANC neurotransmitter in BRP and the effects might be mediated by cGMP and potassium channel.

  • PDF

Relaxing Effects of Acanthopanacis Cortex through NO Production and PDE-5 Inhibition in Corpus Cavernosum (오가피의 NO 생성과 PDE-5 억제를 통한 음경해면체 이완효과)

  • Kim, Ho Hyun;Park, Sun Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.52-58
    • /
    • 2017
  • This study was aimed to examine relaxing effects of Acanthopanacis cortex(AC) through nitric oxide(NO) production and phosphodiesterase type 5(PDE-5) inhibition in corpus cavernosum. In order to define the relaxation effects of AC extract, rabbit corpus cavernous tissues were prepared in $2{\times}2{\times}8mm$ sized strip. AC extract ($0.01-3.0mg/m{\ell}$) were treated in contracted strips induced by phenylephrine(PE) and $N{\omega}$-nitro-L-arginine (L-NNA) was treated before AC extract-treated. And calcium chloride($Ca^{2+}$) 1 mM was infused into precontracted strips after pretreatment of AC extract in $Ca^{2+}-free$ krebs-ringer solution. When AC extract was applied to human umbilical vein endothelial cell(HUVEC), cell viability was measured by MTT assay, and NO concentration was measured by Griess reagent system. Ratio of smooth muscles to collagen fibers and eNOS, PDE-5 positive reaction were measured by histochemical and immunohistochemical process on mice corpus cavernosum. AC extract significantly affected relaxion of the cavernous strips, and the pretreatment of L-NNA inhibited AC extract-induced relaxation. Contraction induced by the addition of $Ca^{2+}$ was inhibited by treatment with the AC extract in $Ca^{2+}-free$ solution. In AC group, NO concentration, ratio of smooth muscle to collagen fibers, and eNOS positive reaction were increased, PDE-5 positive reaction was decreased compared to PE group. As a result of the above experiment, it was thought that AC extract inhibits the inflow of extracellular $Ca^{2+}$ by activating cGMP through the increase of eNOS / NO and the decrease of PDE-5 which inhibits cGMP activity, in the corpus cavernosum.

Effect of the KH-304 on the Nitric Oxide Synthase Activity and Erectile Dysfunction in Young Rats (KH-304 투여가 흰쥐 음경조직의 Nitric Oxide Synthase활성 및 Erectile dysfunction에 미치는 영향)

  • Lee, Eun-Jeong;Lee, Hyun-Ji;Kim, Hee-Seok;Hwang, Sung-Yeoun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.680-684
    • /
    • 2006
  • This study was designed to investigate effects of KH-304 in improving erectile dysfunction (ED), particularly in terms of nitric oxide (NO)-cGMP pathways. After oral administration of the KH-304 water extract, 1OOmg, 300mg, 500mg or 700mg per 1 kg of Dody weigh for 10days, We examined the expression and activity of two enzyme: neuronal NO synthase (nNOS), endothelial NO synthase (eNOS) and that act upon the major NO-cGMP signaling pathway in penile tissue. Effect of KH-304 on COMP degradation was also examined using bovine vascular smooth muscle cells pretreated with an NO donor, S-nitroso-N-Acetylpenicillamine (SNAP), Also, it examined the endothelial NO synthase (eNOS) for seaching effecting period (100mg, 300mg/kg for 10 and 30days) and peak intracavernous pressures (ICPS) in penile tissues rabbit copus cavernosum contracted by 10-6 M phenylephrine. The severely reduced peak intracavernous pressures (ICPS) in penile tissues were restored completely after KH-304 treatment, and KH-304 treatment significantly made the latency period earlier. Furthermore, the penile expression levels of nNOS, eNOS dependent NOS activities and COMP concentrations were increased significantly in the KH-304 100, 300mg treated rats. These results suggest that KH-304 with high expression of NOS may be useful in erectile dysfunction.

Mechanism for the Vascular Relaxation Induced by Butanol Extract of Agrimonia pilosa (선학초 부탄올 추출물의 혈관 이완 효과의 기전에 대한 연구)

  • Hua, Cao-Li;Lee, Jun-Kyung;Cho, Kuk-Hyun;Kwon, Tae-Oh;Kwon, Ji-Woong;Kim, Jin-Sook;Sohn, Eun-Jin;Lee, Ho-Sub;Kang, Dae-Gill
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.2 s.145
    • /
    • pp.67-73
    • /
    • 2006
  • The butanol extracts of Agrimonia pilosa (BAP) induced dose-dependent vascular relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with $N^G$-nitro-L-arginine methyl ester (L-NAME) and 1H-[1,2,4]-oxadiazole-[$4,3-{\alpha}$]-quinoxalin-1-one(ODQ) inhibited the relaxation induced by BAP. BAP-induced vascular relaxation was also markedly attenuated by addition of verapamiI, while the relaxant effect of BAP was not blocked by indomethacine, glibenclamide, tetraethylammonium (TEA), atropine, or propranolo. In addition, incubation of endothelium-intact aortic rings with BAP increased the vascular production of cGMP. These results suggest that BAP relaxes vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling pathway, which may be causally related with L-type $Ca^{2+}$ channels.

Effect of Lophatherum gracile on the mechanism of vasorelaxation in thoracic aorta (담죽엽 추출물의 혈관이완 기전에 대한 연구)

  • Kim, Hye-Yoom;Li, Xiang;Lee, Yun-Jeong;Seo, Hwan-Ho;Cho, Nam-Geun;Kang, Dae-Gill;Lee, Ho-Sub
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.175-186
    • /
    • 2009
  • The vasorelaxant effect of an extract of Lophatherum gracile Brongn (ELB) and its possible action mechanism were ascertained in aortic tissues isolated from rats. ELB relaxed endothelium-intact thoracic aorta in a dose-dependent manner. However, the induced vascular relaxation was abolished by removal in endothelium of the thoracic aorta. Pretreatment of endothelium-intact vascular tissues with $N^G$-nitro-L-arginine methyl ester (L-NAME) or 1H-[1,2,4]-oxadiazole-[4,3-$\alpha$]-quinoxalin-1-one (ODQ) significantly inhibited vascular relaxation induced by ELB. Moreover, ELB significantly increased cGMP production in aortic tissues, which was blocked by pretreatment with L-NAME or ODQ. The vasorelaxant effect of ELB was attenuated by tetraethylammonium (TEA), and glibenclamide. ELB-induced vasorelaxation was not blocked by atropine, propranolol, indomethacin, verapamil, and diltiazem. Taken together, the present study demonstrates that ELB dilates vascular smooth muscle via an endothelium-dependent NO-cGMP signaling pathway, which may be at least in part related with the function of $K^+$ channels.

  • PDF

Study on the Mechanism of Vascular Relaxation Induced by Cortex Caryphylli (정향피 추출물의 혈관 이완효과 및 작용기전에 대한 연구)

  • Song, Chul-Min;Shin, Sun-Ho;Jung, Hyun-Ae;Lee, Jun-Kyoung;Cao, Li-Hua;Kang, Dae-Gil;Lee, Ho-Sup
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1166-1173
    • /
    • 2006
  • The aqueous extracts of Cortex Caryophylli (AEC) induced dose-dependent relaxation of phenylephrine-precontracted aorta, which was abolished by removal of functional endothelium. Pretreatment of the endothelium-intact aortic tissues with N$^G$_nitro-L-arginine methyl ester (L-NAME) or 1 H-[1,2,4]-oxadiazole-[4,3-${\alpha}$l-quinoxalin-1-one (ODQ) inhibited the relaxation induced by AEC. AEC-induced vascular relaxations were also markedly attenuated by addition of verapamil, diltiazem and glibenclamide, tetraethylammonium (TEA), respectively, while the relaxation effect of AEC was not blocked by indomethacin, atropine, or propranolol. Moreover, incubation of endothelium-intact aortic rings with AEC increased the production of cGMP. These results suggest that AEC dilates vascular smooth muscle via endothelium-dependent nitric oxide/cGMP signaling, which seems to be causally related with L-type Ca$^{2+}$ and K$^+$ channels.

Induction of penile erection in spinal cord-injured rabbits by administration of DA- 8159, a new selective PDE 5 inhibitor

  • Ahn, Gook-Jun;Kang, Kyung-Koo;Back, Dae-Hyun;Sohn, Yong-Sung;Choi, Seul-Min;Ahn, Byung-Ok;Kwon, Jong-Won;Kim, Won-Bae
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.250.2-251
    • /
    • 2002
  • DA-8159 is a new. highly selective. potent cyclic-GMP phosphodiesterase 5 inhibitor developed by Dong-A Pharmaceutical Company(Kyunggi, Korea) as an oral drug for the treatment of erectile dysfunction. NO- cGMP signal transduction pathway plays a key role for relaxation of corpus cavernosal smooth muscle. In this study. the efficacy of DA-8159 was evaluated by measuring the length of uncovered penile mucosa in spinal cord injury(SCI) rabbits. (omitted)

  • PDF

The Effect of Carbon Monoxide on L-type Calcium Channel Currents in Human Intestinal Smooth Muscle Cells

  • Lim, In-Ja
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.357-362
    • /
    • 2003
  • Carbon monoxide (CO) is low molecular weight oxide gas that is endogenously produced under physiological conditions and interacts with another gas, nitric oxide (NO), to act as a gastrointestinal messenger. The aim of this study was to determine the effects of exogenous CO on L-type calcium channel currents of human jejunal circular smooth muscle cells. Cells were voltage clamped with 10 mM barium ($Ba^{2+}$) as the charge carrier, and CO was directly applied into the bath to avoid perfusion induced effects on the recorded currents. 0.2% CO was increased barium current ($I_{Ba}$) by $15{\pm}2$% ($mean{\pm}S.E.$, p<0.01, n=11) in the cells. To determine if the effects of CO on barium current were mediated through the cGMP pathway, cells were pretreated with 1-H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, $10{mu}M$), a soluble guanylyl cyclase inhibitor, and exogenous CO (0.2%) had no effect on barium currents in the presence of ODQ ($2{\pm}1$% increase, n=6, p>0.05). CO mediates inhibitory neurotransmission through the nitric oxide pathway. Therefore, to determine if the effects of CO on L-calcium channels were also mediated through NO, cells were incubated with $N^G-nitro-L-arginine$ (L-NNA, 1 mM), a nitric oxide synthase inhibitor. After L-NNA pretreatment, 0.2 % CO did not increase barium current ($4{\pm}2$% increase, n=6, p>0.05). NO donor, SNAP ($20{\mu}M$) increased barium current by $13{\pm}2$% (n=6, p<0.05) in human jejunal smooth muscle cells. These data suggest that CO activates L-type calcium channels through NO/cGMP dependant mechanism.

Coupling Efficiencies of m1, m3 and m5 Muscarinic Receptors to the Stimulation of Neuronal Nitric Oxide Synthase

  • Park, Sun-Hye;Lee, Seok-Yong;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.207-207
    • /
    • 1996
  • Through molecular cloning, five muscarinic receptors have been identified. The muscarinic receptors can be generally grouped according to their coupling to either stimulation of phospholipase C (m1, m3, and m5) or the inhibition of adenylate cyclase (m2 and m4). Each m1, m3, and m5 receptors has the additional potential to couple to the activation of phospholipase A$_2$, C, and D, tyrosine kinase, and the mobilization of Ca$\^$2+/. However, the differences in coupling efficiencies to different second messenger systems between these receptors have not been studied well. Ectopic expression of each of these receptors in mammalian cells has provided the opportunity to evaluate the signal transduction of each in some detail. In this work we compared the coupling efficiencies of the m1, m3 and m5 muscarinic receptors expressed in chinese hamster ovary (CHO) cells to the Ca$\^$2+/ mobilization and the stimulation of neuronal nitric oxide synthase (nNOS). Because G protein/PLC/PI turnover/[(Ca$\^$2+/])i/NOS pathway was supposed as a main pathway for the production of nitric oxide via muscarinic receptors, we studied on ml, m3 and m5 receptors. Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation nitric oxide (NO) in CHO cells. The agonist carbachol increased the cGMP formation and the intracellular [Ca$\^$2+/] in concentration dependent manner in three types of receptors and the increased cGMP formation was significantly attenuated by scavenger of NO or inhibitor of NOS. m5 receptors was most efficiently coupled to stimulation of nNOS, And, the coupling efficiencies to the stimulation of neuronal nitric oxide synthase in three types of receptors were parallel with them to the Ca$\^$2+/ mobilization.

  • PDF

Study on the Relationship between Biliary Secretion and Cyclic Nucleotides (담즙분비와 Cyclic nucleotides간의 상호관계에 관한 연구)

  • Lee, H.W.;Kim, W.J.;Hong, S.S.;Cho, S.J.;Hong, S.U.;Lim, C.K.
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.1
    • /
    • pp.43-54
    • /
    • 1982
  • Bile formation is a complex process comprised of three separate physiologic mechanism operating at two anatomical sites. At present time, it was known that at least two processes are responsible for total canalicular secretion at the bile canaliculus. One of the processes is bile salt-dependent secretion (BSDS) hypothesis that the active transport of bile salts from plasma to bile provided a primary stimulus for bile formation: the osmotic effect of actively transported bile acid was responsible for the movement of water and ions into bile. The other process is bile salt-independent secretion (ESIS), which is unrelated to bile salt secretion at the canaliculus and which may involve the active transport of sodium. The third process for bile formation involves the biliary ductal epithelium. Secretin-stimulated bile characteristically contained bicarbonate in high concentration. Therefor, it was suggested that secretin stimulated water and bicarbonate secretion from the biliary ductules. One the other hand, it was found that a large amounts of cAMP was present in canine bile but no apparent relationship between bile salt secretion and cAMP content in dog bile. However, bile flow studies in human have demonstrated that secretin and glucagon increase bile cAMP secretion as does secretin in baboons. Secretin increases baboon bile duct mucosal cAMP levels in addition to bile CAMP levels suggesting that in that species secretin-stimulated bile flow may be cAMP mediated. It has been postulated that glucagon and theophylline which increase the bile salt-independent secretion in dogs might act through an increased in liver cAMP content. In a few studies, the possible role of cAMP on bile formation has teen tested by administration of an exogenous derivative of cAMP, dibutyryl cAMP. In the rat, DB cAMP did not modify bile flow, but injection of DB cAMP in the dog promoted an increase in the bile salt-independent secretion. Because of these contradictory results, this study was carried out to examine the relationship between cyclic nucleotides and bile flow due to various bile salts as well as secretin or theophylline. Experiments were performed in rabbits with anesthesia produced by the injection of seconal(30 mg/kg). Rabbits had the cystic duct ligated and the proximal end of the divided common duct cannulated with an appropriately sized polyethylene catheter. A similar catheter was placed into the inferior vena cava for administration of drugs. Bile was collected for determination of cyclic nucleotides and total cholate in 15 min. intervals for a few hours. The results are summerized as followings. 1) Administrations of taurocholic acid or chenodeoxycholic acid increased significantly the concentrations of cAMP and cGMP in bile of rabbits. 2) Concentration of cAMP in bile during the continuous infusion of ursodeoxycholic acid, was remarkedly increased in accordance with the increase of bile flow, while on the contrary concentration of cGMP in bile was decreased significantly. 3) Dehydrocholic acid and deoxycholic acid significantly increased bile flow, total cholate output and cyclic nucleotides in bile. 4) Only cAMP concentration in bile was significantly increased from control value by secretin, while theophylline increased cAMP as well as cGMP in rabbit bile. 5) In addition, the administration of secretin to taurocholic acid-stimulated bile flow increased cAMP while theophylline produced the increases of cAMP and cGMP in bile. 6) The administration of insulin to taurocholic acid-stimulated bile flow decreased cAMP concentration, while on the contrary cGMP was remarkedly increased in rabbit bile.

  • PDF