• 제목/요약/키워드: NNPI controller

검색결과 4건 처리시간 0.019초

NNPI 제어기를 이용한 IPMSM 드라이브의 속도 제어 (Speed Control of IPMSM Drive using NNPI Controller)

  • 정동화;최정식;고재섭
    • 조명전기설비학회논문지
    • /
    • 제20권7호
    • /
    • pp.65-73
    • /
    • 2006
  • 본 논문은 신경회로망을 이용한 IPMSM 드라이브의 속도제어를 제시한다. 일반적으로 수치 제어된 기계에서 PI 제어기는 고정된 이득값으로 처리한다. PI 제어기의 고정된 이득값은 어떤 동작조건에서는 양호하게 수행된다. 고정된 이득값을 가진 PI 제어기의 강인성 향상을 위하여 신경회로망을 기초로 하는 새로운 제어 방법인 NNPI 제어기를 제시한다. NNPI 제어기는 속도, 부하토크 및 관성과 같은 파리미터 변동에 대하여 오버슈트를 감소시키고 상승 시간 및 정상상태에 빠르게 도달한다. 또한 본 논문에서는 신경회로망을 사용하여 IPMSM의 속도를 제어하고 ANN 제어기를 사용하여 속도를 추정한다. 신경회로망의 역전파 알고리즘 방법은 전동기의 속도를 실시간으로 추정하는데 사용된다. IPMSM의 속도제어기 결과는 제시된 이득값 조절의 타당성을 입증한다. 그리고 NNPI 제어기는 광범위한 동작상태와 부하 외란에 대하여 고정된 이득값보다 우수한 성능을 가진다.

NNPI 제어기를 이용한 IPMSM의 고성능 제어 (High Performance Control of IPMSM using NNPI Controller)

  • 고재섭;최정식;김길봉;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.53-55
    • /
    • 2006
  • This paper presents self tuning PI controller of IPMSM drive using neural network. NNPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

신경회로망 PI를 이용한 IPMSM의 고성능 속도제어 (High Performance Speed Control of IPMSM using Neural Network PI)

  • 이정호;최정식;고재섭;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2006년도 춘계학술대회 논문집
    • /
    • pp.315-320
    • /
    • 2006
  • This paper presents speed control of IPMSM drive using neural network(NN) PI controller. In general, PI controller in computer numerically controlled machine process fixed gain. They may perform well under some operating conditions, but not all. To increase the robustness of fixed gain PI controller, NNPI controller proposes a new method based neural network. NNPI controller is developed to minimize overshoot, rise time and settling time following sudden parameter changes such as speed, load torque and inertia. Also, this paper is proposed speed control of IPMSM using neural network and estimation of speed using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fired gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

신경망을 이용한 엔진/브레이크 통합 VDC 시스템에 관한 연구 (A Study on the Engine/Brake integrated VDC System using Neural Network)

  • 지강훈;정광영;김성관
    • 제어로봇시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.414-421
    • /
    • 2007
  • This paper presents a engine/brake integrated VDC(Vehicle Dynamic Control) system using neural network algorithm methods for wheel slip and yaw rate control. For stable performance of vehicle, not only is the lateral motion control(wheel slip control) important but the yaw motion control of the vehicle is crucial. The proposed NNPI(Neural Network Proportional-Integral) controller operates at throttle angle to improve the performance of wheel slip. Also, the suggested NNPID controller performs at brake system to improve steering performance. The proposed controller consists of multi-hidden layer neural network structure and PID control strategy for self-learning of gain scheduling. Computer Simulation have been performed to verify the proposed neural network based control scheme of 17 dof vehicle dynamic model which is implemented in MATLAB Simulink.