• 제목/요약/키워드: NMUR1

검색결과 2건 처리시간 0.013초

Three Dimensional Structure Prediction of Neuromedin U Receptor 1 Using Homology Modelling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제10권1호
    • /
    • pp.7-13
    • /
    • 2017
  • Neuromedin U receptor 1 is a GPCR protein which binds with the neuropeptide, neuromedin. It is involved in the regulation of feeding and energy homeostasis and related with immune mediated inflammatory diseases like asthma. It plays an important role in maintaining the biological clock and in the regulation of smooth muscle contraction in the gastrointestinal and genitourinary tract. Analysing the structural features of the receptor is crucial in studying the pathophysiology of the diseases related to the receptor important. As the three dimensional structure of the protein is not available, in this study, we have performed the homology modelling of the receptor using 5 different templates. The models were subjected to model validation and two models were selected as optimal. These models could be helpful in analysing the structural features of neuromedin U receptor 1 and their role in disorders related to them.

Binding Interaction Analysis of Neuromedin U Receptor 1 with the Native Protein Neuromedin U

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제10권1호
    • /
    • pp.14-19
    • /
    • 2017
  • Neuromedin, a neuropeptide, which is involved in various functions that include contractile activity on smooth muscle, controlling the blood flow and ion transport in the intestine, increased blood pressure and regulation of adrenocortical function. It is involved in the pathophysiology of various immune mediated inflammatory diseases like asthma. In this study, we have performed protein-protein docking analysis of neuromedin U - neuromedin U receptor 1 complex. We have developed homology models of neuromedin U, and selected a reliable model using model validation. The model was docked with the receptor model, to analyse the crucial interactions of the complex. This study could be helpful as a tool in developing novel and potent drugs for the diseases related with neuromedin U receptor 1.