• Title/Summary/Keyword: NMR spectroscopic analysis

Search Result 204, Processing Time 0.026 seconds

NEAR INFRARED TRANSFLECTANCE SPECTROSCOPY (NIRS) IN PHYTOCHEMISTRY

  • Huck, C.W.;W.Guggenbichler;Bonn, G.K.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3114-3114
    • /
    • 2001
  • During the last years phytochemistry and phytopharmaceutical applications have developed rapidly and so there exists a high demand for faster and more efficient analysis techniques. Therefore we have established a near infrared transflectance spectroscopy (NIRS) method that allows a qualitative and quantitative determination of new polyphenolic pharmacological active leading compounds within a few seconds. As the NIR spectrometer has to be calibrated the compound of interest has at first to be characterized by using one or other a combination of chromatographic or electrophoretic separation techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), gas chromatography (GC) and capillary electrochromatography (CEC). Both structural elucidation and quantitative analysis of the phenolic compound is possible by direct coupling of the mentioned separation methods with a mass spectrometer (GC-MS, LC-MS/MS, CE-MS, CEC-MS) and a NMR spectrometer (LC-NMR). Furthermore the compound has to be isolated (NPLC, MPLC, prep. TLC, prep. HPLC) and its structure elucidated by spectroscopic techniques (UV, IR, HR-MS, NMR) and chemical synthesis. After that HPLC can be used to provide the reference data for the calibration step of the near infrared spectrometer. The NIRS calibration step is time consuming, which is compensated by short analysis times. After validation of the established NIRS method it is possible to determine the polyphenolic compound within seconds which allows to raise the efficiency in quality control and to reduce costs especially in the phytopharmaceutical industry.

  • PDF

C-NMR Spectroscopic Study of Alkylbenzenes as Synthetic Lubricant Base Stocks (합성기유로서의 알킨벤젠의 $^{13}$C-NMR분광학적 연구)

  • 최주환;전용진;최웅수;권오관
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.16-21
    • /
    • 1993
  • Alkylbenzenes used as the synthetic lubricant base stocks were composed of the mixture of the various kinds of aromatic hydrocarbons. Their compositions have affected on the quality of synthetic alkylbenzene lubricants. Therefore, the rapid and accurate methods for the composit ional analysis are important. In this study, the compositions of the alkylbenzenes (Hv. LAB, FHv. LAB, Hv, BAB, DAB[HF], DAB[$AlCl_3$]) as synthetic base stocks have been investigated according to six average structural parameters(Tar, Nal, Asub, $\bar{n}$, nb, $T\alpha$) in the view of the molecular structures by $^{13}C-NMR$ spectroscopy. The experimental results of the oxidation $\varepsilon$ thermal stability tests have been related to the results of the molecular structural analysis.

An isolation of the active component of Carthamus tinctorius L. Semen and the evaluation of its hepato-protective effect

  • Jeong, Jeong-Suk;Jeong, Choon-Sik;Jung, Ki-Hwa
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.179-179
    • /
    • 1998
  • We previously reported the hepato-protective effect of butanol soluble fraction of methanolic extract of Carthamus tinctorius L. Semen on carbon tetrachloride induced hepatotoxicity. In this study, the active component from the butanol soluble fraction was isolated by column chromatographic separation using Silica gel and Sephadex LH -20 and identified by spectroscopic methods such as Mass, $^1$H - NMR and $\^$13/C-NMR. The hepato-protective effect of the isolated active component on the CCl$_4$-induced liver damaged rats has been evaluated by performing blood chemical analysis and biotransformational enzyme analysis.

  • PDF

The Spectroscopic Study on the Role of C-terminal Region of T4 endonuclease V in the Interaction with DNA: NMR and Fluorescence Experiment (DNA와 상호작용에서 T4 endonuclease V의 C-말단 부위의 역할에 관한 분광학적 연구: 핵자기공명과 형광 실험)

  • Yu, Jun-Seok;Lihm, Hyung-Mi;Ihm, Hu-Kang;Shin, Jung-Hyu;Lee, Bong-Jin
    • YAKHAK HOEJI
    • /
    • v.40 no.2
    • /
    • pp.193-201
    • /
    • 1996
  • In order to study the role of C-terminal aromatic region of T4 endonuclease V in the interaction with substrate DNA, NMR and Fluorescence spectrum were recorded. Analysis of flu orescence emission spectra showed that C-terminal region of T4 endonuclease V is in or very near the binding site. In the HSQC spectrum of $^{15}N$-Tyr-labeled T4 endonuclease V*DNA complex, the broadening of a peak was observed. It is presumed that this peak corresponds to one among three tyrosine residues which belong to the WYKYY segment of C-terminal region of T4 endonuclease V. Interactions of peptide fragments consisting of C-terminal residues of T4 endonuclease V with DNAs(TT-, T^T-DNA) were investigated by NMR and Fluorescence experiment. The results suggest that two peptide fragments themselves bind to DNAs and their binding pattern is not an intercalation mode.

  • PDF

$^{1}$H-NMR spectroscopic evidence on the glycosidic linkages of the transglycosylated products of low-molecular-weight $\beta$-D-glucosidase from trichoderma koningii (Trichoderma koningii에서 분비되는 .$\beta$-D-glucosidase의 반응산물에 대한 핵자기공명분석)

  • 이헌주;정춘수;강사욱;하영칠
    • Korean Journal of Microbiology
    • /
    • v.27 no.1
    • /
    • pp.35-42
    • /
    • 1989
  • The mode of transglycosylation reaction observed during the action of low-molecular-weigh $\beta$-D-glucosidase ($\beta$-D-glucoside glucohydrolase, EC3.2.1.21) purified from Trichoderma koningii ATCC 26113 was investigated using $^{1}H$-NMR spectroscopy. The enzyme was purified by the series of procedures including ammonium sulfate precipitation, and fractionations by column chromatographies on Bio-Gel P-150, DEAE-Sephadex A-50, and SP-Sephadex C-50. The final purification was performed by the band eluation after preparative polyacrylamide gel electrophoresis. The enzyme showed its molecular size of 78,000 through the analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its isoelectric point of 5.80 through the analysis of analytical isoelectric focusing. The H-1 proton resonances were analyzed. After the reaction of the enzyme with cellobiose, the reaction products were separated by high performance liquid chromatography using refractive index detector. H-1 resonances of the products were consisted with those of gentiobiose [$\beta$-D-glucopyranosyl--(1,6)-D-glucopyranose], and cellotriose [$\beta$-D glucopyranosyl-(1,4)-$\beta$-D-glucopyranosyl]-(1,4)-D-glucopyranose] with minor resonances of sophorose [$\beta$-D-glucopyranosyl-(1,2)-D-glucopyranose], respectively.

  • PDF

Chemical Constituents of Nauclea vanderguchtii

  • Nkouayeb, Brice Maxime Nangmou;Azebaze, Anatole Guy Blaise;Tabekoueng, Georges Bellier;Tsopgni, Willifred Dongmo Tekapi;Lenta, Bruno Ndjakou;Frese, Marcel;Sewald, Norbert;Vardamides, Juliette Catherine
    • Natural Product Sciences
    • /
    • v.26 no.2
    • /
    • pp.144-150
    • /
    • 2020
  • Phytochemical investigation of leaves, barks and roots of Nauclea vanderguchtii led to the isolation of sixteen compounds, which includes one citric acid derivative (2), one alkaloid (16), one peptide derivative (3), and twelve triterpenes (1, 4 - 13). These compounds were identified as rotundanonic acid (1), 2-hydroxy-1,2,3-propanetricarboxylic acid 2-methyl ester (2), asperphenamate (3), lupeol (4), stigmasterol (5), betulin (6), betulenic acid (7), stigmasterol 3-O-β-D-glucopyranoside (8), quinovic acid 3β-O-α-L-rhamnoside (9), α-amyrin (10), 3-oxoquinovic acid (11), ursolic acid (12), hederagenin (13), rotundic acid (14), clethric acid (15), and naucleficine (16) by the analysis of their NMR spectroscopic data including 2D NMR spectra and by comparison of their spectroscopic data reported in the literature. Compounds 1 and 3 were isolated for the first time in the genus Nauclea, and compound 2 was isolated for the first time from the Rubiaceae family. Complete NMR assignations for 1 have been published for the first time.

Biological Control of Phytophthora Blight of Red-pepper Caused by Phytophthora capsici.;Ⅲ. Identification of the Antifungal Substances Produced by Pseudomonas sp. A - 183. (고추역병균(疫病菌)(Phytophthora capsici)의 생물학적(生物學的) 방제(防除);Ⅲ. 항균물질(抗菌物質)의 구조분석(構造分析))

  • Chang, Yoon-Hee;Jang, Sang-Moon;Choi, Jyung;Lee, Dong-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.1-6
    • /
    • 1997
  • This study was carried out to identify the three antifungal substances isolated from the culture medium of Pseudomonas sp. A-183 which is antagonistic against Phytophthora capsici. The substance A and B showed positive reactions at the Molish test and Anthrone test, but negative one at the Fehling test, strongly suggesting that both substance A and B had nonreducing sugar frameworks. The substance C only exhibited the phenomenon of the UV induced fluorescence. From the qualitative analysis with the spectroscopic techniques such as UV, Mass, IR and NMR, the substance A and B were known to be composed to sugar and fatty acid, and showed a base peak of 171(m/e). It was identified that substance A was $(2-O-L-rhamnosyl-{\alpha}-L-rhamnosyl-{\beta}-hydroxydecanoyl-{\beta}-hydroxy$ decanoic acid) and the substance B was $({\alpha}-L-rhamnosyl-{\beta}-hydroxydecanoyl-{\beta}-hydroxy$ decanoic acid). The substance C was identified as a phenazine from the results of qualitative analysis with the spectroscopic techniques such as UV, Mass, IR and NMR.

  • PDF

Characterization of Humic and Fulvic Acids Extracted at the Soils of Korea and Its DB Establishment (국내 토양 휴믹물질의 특성 규명 및 DB 구축에 대한 연구)

  • 이창훈;유지호;신현상;정근호;이창우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.397-400
    • /
    • 2003
  • In this study, humic and fulvic acids in soils at the vicinity of domestic atomic power plants(NPPs), located in Yungkwang(YK), Uljin(UJ), Kori(KR), Koseong(KS), Wolseong(WS) area, and in volcanic ash soils of the Cheju island(Mt. Hanla(HL), Manjanggul(MJ)) were isolated, and characterized using chemical(elemental analysis, proton exchange capacity, molecular size distribution) and spectroscopic(UV/Vis., IR, FL, $^{13}$ C NMR spectra) methods. The results were compared with one another and compiled for their DB establishments. The humic substances distribution (humic acid, fulvic acid, Humin) in the soils were also determined by IHSS standard method. Main purpose of this study was to provide a basic data needed to evaluate the effect of humic substances on the migrational behaviour of radioactive elements in contaminated surface soil.

  • PDF

Potentially Bioactive Two New Natural Sesquiterpenoids from the Rhizomes of Zingiber zerumbet

  • Jang Dae Sik;Seol Eun Kyoung
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.294-296
    • /
    • 2005
  • Repeated chromatography of the n-hexane-soluble fraction of the MeOH extract of the rhizomes of Zingiber zerumbet led to the isolation of two isomers of 6-methoxy-2E,9E-humula-dien-8-one (1 and 2) and stigmast-4-en-3-one. The structures of 1 and 2 were determined by spectroscopic methods including 10 and 2D-NMR elucidated by analysis of spectroscopic data as well as by comparison with published values. This is the first report on the isolation of compounds 1 and 2 from the nature. Stigmast-4-en-3-one was first isolated from this plant.

The Effect of Salt and pH on the Phase Transition Behaviors of pH and Temperature-Responsive Poly(N,N-diethylacrylamide-co-methylacrylic acid)

  • Liu, Tonghuan;Fang, Jian;Zhang, Yaping;Zeng, Zhengzhi
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.670-675
    • /
    • 2008
  • A series of pH and temperature-responsive (N,N-diethylacrylamide-co-methylacrylic acid) copolymers were synthesized by radical copolymerization and characterized by elemental analysis, Fourier-transform infrared (FT-IR), nuclear magnetic resonance (NMR) $^1H$, $^{13}C$ and LLS. The effects of salt and pH on the phase transition behaviors of the copolymers were investigated by uv. With increasing NaCl concentration, significant salt effects on their phase transition behaviors were observed. UV spectroscopic studies showed that the phase transition became faster with increasing NaCl concentration. In addition, the phase transition behaviors of copolymers were sensitive to pH. The pH and temperature sensitivity of these copolymers would make an interesting drug delivery system.