• Title/Summary/Keyword: NMR spectra

Search Result 667, Processing Time 0.029 seconds

Efficient Synthesis of hypho-2,5-$S_2B_7H_{11}$ and Preparation of New nido-, arachno-, and hypho-Metalladithiaborane Clusters Derived from Its Anion hypho-$S_2B_7H_{10}{^-}$

  • 강창환;김성준;고재정;강상욱
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1067-1074
    • /
    • 1995
  • Reaction of arachno-S2B7H8- with either THF or 1,2-dimethoxyethane upon refluxing condition results in the formation of the previously known compound hypho-S2B7H10-. Protonation of hypho-S2B7H10- with HCl/Et2O generates hypho-2,5-S2B7H11 in good yield. This hypho-S2B7H10- anion has been employed to generate a series of new nido-, arachno-, and hypho-metalladithiaborane clusters. Reaction of the anion with Cp(CO)2FeCl results in direct metal insertion and the formation of a complex containing the general formula (η5-C5H5)FeS2B7H8. Spectroscopic studies of nido-6-CpFe-7,9-S2B7H8 Ⅰ demonstrated that compound Ⅰ was shown to have an nido-type cage geometry derived from an octadecahedron missing one vertex, with the iron atom occupying the three-coordinate 6-position in the cage and the two sulfurs occupying positions on the open face of the cage. Reaction of hypho-S2B7H10- with CoCl2/Li+[C5H5]- gave the previously known complex arachno-7-CpCo-6,8-S2B6H8 Ⅱ. Also, the reaction of the anion with [Cp*RhCl2]2 gave the complex arachno-7-Cp*Rh-6,8-S2B6H8 Ⅲ, the structure of which was shown to be that of complex Ⅱ. The similarity of the NMR spectra of Ⅱ and Ⅲ suggest that Ⅲ adopts cage structure similar to that previously confirmed for Ⅱ. A series of 9-vertex hypho clusters in which the sulfur atoms are bridged by different species isoelectronic with a BH3 unit, such as HMn(CO)4 or SiR2 have been prepared. Compounds Ⅳ,Ⅴ and Ⅵ are each 2n+4 skeletal electron systems and would be expected according to skeletal electron counting theory to adopt hypho-type polyhedral structures derived from an icosahedron missing three vertices. The complex hypho-1-(CO)4Mn-2,5-S2B6H9 Ⅳ was obtained by the reaction of the anion with (CO)5MnBr and has been shown from spectroscopic data to consist of a (CO)4Mn fragment bound to the two sulfur atoms S2 and S5 of hypho-S2B7H10-. Also, similar hypho-type complexes hypho-1-R2Si-2,5-S2B6H8 (R=CH3 Ⅴ, R=C6H5 Ⅵ) have been prepared from the reaction of hypho-S2B7H10- with R2SiHCl.

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

Synthesis and Properties of Molybdenum and Tungsten Oxo-Nitrosyl Complexes of Methylthioamidoxime (산소-니트로실 착물의 연구(제3보): 티오메틸아미드옥심의 몰리브덴과 텅스텐 산소-니트로실 착물의 합성과 특성)

  • Roh, Soo Gyun;Oh, Sang Oh
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.28-36
    • /
    • 1996
  • The pentanuclear complexes have been obtained by the reactions of molybdenum(VI) and tungsten(VI) polynuclear complexes with molybdenum(O) and tungsten(O) dinitrosyl mononuclear complexes, and methylthioamidoxime. The prepared complexes (n-Bu4N)2[Mo4O12Mo(NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2](1), (n-Bu4N)2[W4O12Mo(NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2](2), (n-Bu4N)2[Mo4O12W (NO)2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2] (3) have been characterized by elemental analysis, infrared, UV-visible and 1H NMR spectra. The complexes are elucidated the cis-{M(NO)2}2+(M = Mo, W) unit and a slight delocalization by spectroscopy. The structure of (n-Bu4N)2[W4O12Mo(NO) 2{CH3SCH2C(NH2)NHO}2{CH3SCH2C(NH)NO}2] was determined by X-ray single crystal diffraction. Crystal data are follows: Monoclinic, $P21}a$, a = 22.14(2) $\AA$, b = 14.93(1) $\AA$, c = 23.20(1) $\AA$, $\beta$ = 111.08(6) $\AA$, V = 7155(9) $\AA$, Z = 4, final R = 0.072 for 6191(I > $3\sigma(I)).$ The structure of complex forms two dinuclear [W2O5{CH3SCH2C(NH2)NHO}{CH3SCH2C(NH)NO}] and a central {Mo(NO)2} 2+ core. The geometric structure of the {Mo(NO)2} 2+unit is the formally cistype and C2v symmetry.

  • PDF

A Study on the Fouling of Ultrafiltration Membranes Used in the Treatment of an Acidic Solution in a Circular Cross-flow Filtration Bench (순환식 막 모듈 여과장치를 이용한 산성용액의 수처리 공정 시 발생하는 한외여과막 오염에 관한 연구)

  • Kim, Nam-Joon;Choi, Chang-Min;Choi, Yong-Hun;Lee, Jun-Ho;Kim, Hwan-Jin;Park, Byung-Jae;Joo, Young-Kil;Kang, Jin-Seok;Paik, Youn-Kee
    • Membrane Journal
    • /
    • v.19 no.3
    • /
    • pp.252-260
    • /
    • 2009
  • The effects of the treatment of an acidic solution at pH 2 on polyacrylonitrile ultrafiltration (UF) membranes were investigated using a circular cross-flow filtration bench with a membrane module. A substantial reduction in the membrane permeability was observed after 80 hours' treatment of the acidic solution. In addition, the analyses of the sample solutions by ultraviolet/visible absorption spectroscopy and gas chromatography/mass spectrometry (GC/MS), which were taken from the feed tank as a function of the treatment time, showed that a new organic compound was produced in the course of the treatment. From a thorough search of the mass spectral library we presumed the new compound to be 1,6-dioxacyclododecane-7,12-dione (DCD), one of the well-known additives for polyurethane. Based on further experimental results, including the scanning electron microscope (SEM) images and the solid-state NMR spectra of the membranes used for the treatment of the acidic solution, we suggested that the decrease of the permeate flux resulted not from the deformation of the membranes, but from the fouling by DCD eluted from the polyurethane tubes in the filtration bench during the treatment. Those results imply that the reactivity to an acidic solution of the parts comprising the filtration bench is as important as that of the membranes themselves for effective treatments of acidic solutions, for efficient chemical cleaning by strong acids, and also in determining the pH limit of the solutions that can be treated by the membranes.

Structural Characterization of the Anti-Complementary and Macrophage Activating Polysaccharides Isolated from Agaricus bisporus (양송이에서 분리한 보체계와 대식세포 활성화 다당류의 구조적 특성)

  • Kim, Byung-Hee;Kweon, Mee-Hyang;Lim, Wang-Jin;Sung, Ha-Chin;Yang, Han-Chul
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.709-716
    • /
    • 1998
  • Three kinds of anti-complementary system and macrophage activating polysaccharides, AB-20-Ia, AB-20-IIa-2a and AB-20-IVa-2 were isolated from the fruit body of Agaricus bisporus and their structures were characterized. The proteoglycan, AB-20-IVa-2 showing the most potent anti-complementary and macrophage activity was composed of glucose, galactose, mannose, xylose, fucose and arabinose in a molar ratio of 3.48:1.83:1.00:0.79:0.74:0.11 and its main component amino acids were phenylalanine (34.72%) and valine (27.84%). The neutral polysaccharides, AB-20-Ia and AB-20-IIa-2a showing lower activity than AB-20-IVa-2, consisted of xylose, glucose, mannose, fucose and arabinose in molar ratios of <0.05:<0.05:2.07:1.00:2.72 and 2.16:1.58:1.00:0.20:0.14, respectively. The molecular weights of AB-20-Ia, AB-20-IIa-2a and AB-20-IVa-2 were 840,000, 750,000 and 650,000 respectively. In the $^1H-\;and\;^{13}C-NMR$ spectra of AB-20-Ia and AB-20-IIa-2a, AB-20-Ia showed only ${\beta}-configuration\;(^1H:\;4.8\;ppm,\;^{13}C:\;107.0\;ppm)$ in the anomerization of the glycosidic linkages, while AB-20-IIa-2a had both ${\alpha}-anomer\;(^1H:\;5.4\;ppm,\;^{13}C:\;102.0\;ppm)\;and\;{\beta}-anomer$. Especially, AB-20-Ia and AB-20-IIa-2a showed acetyl signals $(^1H:\;2.5\;ppm,\;^{13}C:\;21.0\;ppm)$. In the methylation analysis of the three polysaccharides, high proportion of 1,6-linked glucofuranosyl residues were detected in AB-20-Ia, whereas 1,6-linked glucopyranosyl residues and branches linked at position 4 of those mainly contained in AB-20-IIa-2a. AB-20-IVa-2 consisted mainly of 1,2-linked xylofuranosyl residues and 1,6-linked glucopyranosyl residues and branches linked at position 3 of those.

  • PDF

The Effect of Nuclear Overhauser Enhancement in Liver and Heart $^{31}P$ NMR Spectra Localized by 2D Chemical Shift Technique (이차원 화학변위 기법을 이용한 간 및 심장 $^{31}P$ 자기공명분광에서의 Nuclear Overhauser 효과에 대한 연구)

  • Ryeom Hun-Kyu;Lee Jongmin;Kim Yong-Sun;Lee Sang-Kwon;Suh Kyung-Jin;Bae Sung-Jin;Chang Yongmin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.2
    • /
    • pp.94-99
    • /
    • 2004
  • Purpose : To investigate the signal enhancement ratio by NOE effect on in vivo $^{31}P$ MRS in human heart muscle and liver. we also evaluated the enhancement ratios of different phosphorus metabolites, which are important in 31P MRS for each organ. Materials and Methods : Ten normal subjects (M:F = 8:2, age range = 24-32 yrs) were included for in vivo $^{31}P$ MRS measurements on a 1.5 T whole-body MRI/MRS system using $^1H-^{31}P$ dual tuned surface coil. Two-dimensional Chemical Shift Imaging (2D CSI) pulse sequence for $^{31}P$ MRS was employed in all $^{31}P$ MRS measurements. First, $^{31}P$ MRS performed without NOE effect and then the same 2D CSI data acquisitions were repeated with NOE effect. After postprocessing the MRS raw data in the time domain, the signal enhancements in percent were estimated from the major metabolites. Results : The calculated NOE enhancement for liver $^{31}P$ MRS were $\alpha-ATP\;(7\%),\;\beta-ATP\;(9\%),\;\gamma-ATP\;(17\%),\;Pi\;(1\%),\;PDE\;(19\%)$ and $PME\;(31\%)$. Because there is no creatine kinase activity in liver, PCr signal is absent. For cardiac $^{31}P$ MRS, whole body coil gave better scout images and thus better localization than surface coil. In $^{31}P$cardiac multi-voxel spectra, DPG signal increased from left to right according to the amount of blood included. The calculated enhancement for cardiac $^{31}P$ MRS were : $\alpha-ATP\;(12\%),\;\beta-ATP\;(19\%),\;\gamma-ATP\;(30\%),\;PCr\;(34\%),\;Pi\;(20\%),\;(PDE)\;(51\%),\;and\;DPG\;(72\%)$. Conclusion : Our results revealed that the NOE effect was more pronounced in heart muscle than in liver with different coupling to 1H spin system and thus different heteronuclear cross-relaxation.

  • PDF

Neurochemical Profile Quantification of Regional Adult Mice Brain Using: ex vivo $^1H$ High-Resolution Magic Angle Spinning NMR Spectroscopy (생체 외 조직 고 분해능 Magic Angle Spinning을 이용한 정상 Adult Mice에서의 뇌 부위별 뇌 신경화학 대사물질 정량분석)

  • Lee, Do-Wan;Woo, Dong-Cheol;Lee, Sung-Ho;Kim, Sang-Young;Kim, Goo-Young;Rhim, Hyang-Shuk;Choi, Chi-Bong;Kim, Hwi-Yool;Lee, Chang-Wook;Choe, Bo-Young
    • Progress in Medical Physics
    • /
    • v.21 no.1
    • /
    • pp.35-41
    • /
    • 2010
  • The purpose of this study is to quantitate regional neurochemical profile of regional normal adult mice brain and assess regional metabolic differences by using ex vivo $^1H$ high-resolution magic angle spinning nuclear magnetic resonance spectroscopy ($^1H$ HR-MAS NMRS). The animals were matched in sex and age. The collected brain tissue included frontal cortex, temporal cortex, thalamus, and hippocampus. Quantitative 1D spectra were acquired on 40 samples with the CPMG pulse sequence (8 kHz spectral window, TR/TE = 5500/2.2 ms, NEX = 128, scan time: 17 min 20 sec). The mass of brain tissue and $D_2O$+TSP solvent were 8~14 mg and 7~13 mg. A total of 16 metabolites were quantified as follow: Acet, NAA, NAAG, tCr, Cr, tCho, Cho, GPC + PC, mIns, Lac, GABA, Glu, Gln, Tau and Ala. As a results, Acet, Cho, NAA, NAAG and mIns were showed significantly different aspects on frontal cortex, hippocampus, temporal cortex and thalamus respectively. The present study demonstrated that absolute metabolite concentrations were significantly different among four brain regions of adult mice. Our finding might be helpful to investigate brain metabolism of neuro-disease in animal model.