• Title/Summary/Keyword: NMR analysis

Search Result 1,402, Processing Time 0.047 seconds

The Possible Discovery of a Reagent for Cancer Diagnosis by Urine NMR Analysis

  • Kim, Yong-Jin;Lee, Jong-Hwa;Lee, Hee-J.
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.149-152
    • /
    • 1988
  • From the analysis of proton NMR signals of human urine it is found that the signals corresponding to a phenolic compound of tyrosine are more frequently observed in cancer urine than in non-cancer urine. An effective reagent is obtained to detect the substance excreted in the urine and to find out a close connection with the result of the NMR analysis. An attempt is made to determine the reagent sensitivity and specificity for cancer diagnosis. The results of the attempt are respectively above 75% for both on an average.

  • PDF

Determination of Aspirin Tablet Manufacturers by an NMR-based Metabolomic Approach

  • Choi, Moon-Young;Kang, Sun-Mi;Park, Jeong-Hill;Kwon, Sung-Won
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2009
  • Aspirin or acetylsalicylic acid, a member of the salicylate family, is frequently used as an analgesic, antipyretic, anti-inflammatory and antiplatelet drug. Because aspirin is chemically unstable in water and heat for tablet formulation, additives including lubricants are used in preparing aspirin tablets, using a dry-granulation process. Aspirin tablets are produced by a number of manufacturers which usually use their own unique combination of additives during the manufacturing process. In this study, we employed an NMR based metabolomics technique to identify the manufacturers of various aspirin tablets. Aspirin tablets from six different companies were analyzed by 1H 400 MHz NMR. The acquired data was then integrated and processed by principal component analysis (PCA). Based on the NMR data, we were able to identify peaks corresponding to acetylsalicylic acid in all of the six samples, whereas different NMR patterns were found in the aromatic and aliphatic regions depending on the unique additive used. These observations led to the conclusion that the differences in the NMR patterns among the different aspirin tablets were due to the presence of additives.

NMR Chemical Shift for 4d$^n$System (Ⅳ). Calculation of NMR Chemical Shift for 4d$^2$ System in a Strong Crystal Field Environment of Octahedral Symmetry

  • Ahn, Sang-Woon;Oh, Se-Woong;Yang, Jae-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.5
    • /
    • pp.255-259
    • /
    • 1985
  • The NMR chemical shift arising from 4d electron orbital angular momentum and 4d electron spin dipolar-nuclear Spin angular momentum interactions for a $4d^2$ system in a strong crystal field environment of octahedral symmetry has been investigated when the four fold axis is taken as the quantization axis. The NMR results are comparted with the multipolar shift at various R-values and we find that the exact results are in agreement with the multipolar shift when $R{\geqslant}0.20 nm.$ We also separate the NMR shift into the contribution of the $1/R^5$ and $1/R^7$ terms. It is found that the contribution of the $1/R^5$term to the NMR shift is dominant than the contribution of the $1/R^7$ term. Temperature dependence analysis shows that the $1/T^2$ term is the dominant contribution to the NMR shift for a $4d^2$ system but the contribution of the 1/T term may not negligible. The similar results are obtained for a $4d^1$ system from the temperature dependence analysis.

NMR methods for structural analysis of RNA: a Review

  • Kim, Nak-Kyoon;Nam, Yun-Sik;Lee, Kang-Bong
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.5-9
    • /
    • 2014
  • In last three decades, RNA molecules have been revealed to play the central roles in many cellular processes. Structural understanding of RNA molecules is essential to interpret their functions, and many biophysical techniques have been adopted for this purpose. NMR spectroscopy is a powerful tool to study structures and dynamics of RNA molecules, and it has been further applied to study tertiary interactions between RNA molecules, RNA-protein, and RNA-small molecules. This short article accounts for the general methods for NMR sample preparations, and also partially covers the resonance assignments of structured RNA molecules.

Detection of Iron Nanoparticles using Nuclear Magnetic Resonance Relaxometry and Inverse Laplace Transform

  • Kim, Seong Min
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.345-351
    • /
    • 2014
  • Purpose: Rapid detection of bacteria is very important in agricultural and food industries to prevent many foodborne illnesses. The objective of this study was to develop a portable nuclear magnetic resonance (NMR)-based system to detect foodborne pathogens (E. coli). This study was focused on developing a method to detect low concentrations of magnetic nanoparticles using NMR techniques. Methods: NMR relaxometry was performed to examine the NMR properties of iron nanoparticle mixtures with different concentrations by using a 1 T permanent magnet magnetic resonance imaging system. Exponential curve fitting (ECF) and inverse Laplace transform (ILT) methods were used to estimate the NMR relaxation time constants, $T_1$ and $T_2$, of guar gum solutions with different iron nanoparticle concentrations (0, $10^{-3}$, $10^{-4}$, $10^{-5}$, $10^{-6}$, and $10^{-7}M$). Results: The ECF and ILT methods did not show much difference in these values. Analysis of the NMR relaxation data showed that the ILT method is comparable to the classical ECF method and is more sensitive to the presence of iron nanoparticles. This study also showed that the spin-spin relaxation time constants acquired by a Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence are more useful for determining the concentration of iron nanoparticle solutions comparwith the spin-lattice relaxation time constants acquired by an inversion recovery pulse sequence. Conclusions: We conclude that NMR relaxometry that utilizes CPMG pulse sequence and ILT analysis is more suitable for detecting foodborne pathogens bound to magnetic nanoparticles in agricultural and food products than using inversion recovery pulse sequence and ECF analysis.

Applications of NMR spectroscopy based metabolomics: a review

  • Yoon, Dahye;Lee, Minji;Kim, Siwon;Kim, Suhkmann
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.17 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Metabolomics is the study which detects the changes of metabolites level. Metabolomics is a terminal view of the biological system. The end products of the metabolism, metabolites, reflect the responses to external environment. Therefore metabolomics gives the additional information about understanding the metabolic pathways. These metabolites can be used as biomarkers that indicate the disease or external stresses such as exposure to toxicant. Many kinds of biological samples are used in metabolomics, for example, cell, tissue, and bio fluids. NMR spectroscopy is one of the tools of metabolomics. NMR data are analyzed by multivariate statistical analysis and target profiling technique. Recently, NMR-based metabolomics is a growing field in various studies such as disease diagnosis, forensic science, and toxicity assessment.

Kinetics Study of $2^{nd}$ Hydrolysis in Concentrated Sulfuric Acid Hydrolysis Process by $^1H-NMR$ Spectroscopy (진한 황산 가수분해에서 2단계 산 가수분해 반응에서 일어나는 반응 동역학(Kinetics)을 $^1H-NMR$을 사용한 연구)

  • Shin, Soo-Jeong;Kim, Yong-Hwan;Cho, Dae-Haeng;Sung, Yong-Joo;Kim, Byung-Ro;Cho, Nam-Seok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.93-99
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetics study of concentrated sulfuric acid hydrolysis reaction. Xylan was used as model compounds. Without neutralization steps in proton-NMR methods, this analysis method is valid for analysis of xylose, furfural and formic acid in acid hydrolyzates.

  • PDF

Solvent-localized in-situ NMR Monitoring by Intermolecular Single-quantum Coherence Study

  • Cha, Jin Wook;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.24 no.4
    • /
    • pp.96-103
    • /
    • 2020
  • A new NMR method to monitor solvent-localized NMR signals in the two-phase liquid system is suggested. This method based on intermolecular single-quantum coherence (iSQC). Here, we exploited the feature of the local action of distant dipolar field (DDF) effect in order to filter out specific NMR signals dissolved in different solvents. This solvent specific iSQC spectroscopy was carried out on a model two-phase liquid system (D-glucose in water/palmitic acid in chloroform), and showed solvent-localized NMR signals. We believe our approaches might be useful in metabolic analysis such as two-phase liquid extraction scheme for labile chemical species.

$^1H$ NMR Study of mono-and di-cyanide ligated Hemin Complexes as Models of Hemoproteins (Heme 단백질의 Model로서의 Hemin 착물에 관한 $^1H$ NMR 연구)

  • Lee, Kang-Bong;Kim, Nam Jun;Kweon, Jeehye;Rhee, Jae-Seong;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.505-515
    • /
    • 1994
  • $^1H$ NMR spectra for monocyanide ligated ferriprotoporphyrin(hemin) complex and dicyanide coordinated hemin complex in dimethylsulfoxide(DMSO-$d_6$) solution have been recorded and analyzed. NMR spectra of hemin-cyanide complexation in DMSO-$d_6$ exhibit that the cyanide ligation to hemin is temperature-dependent. Thermodynamic parameters for the monocyanide ligated hemin to dicyanide ligated hemin are consistent with endothermic process with ${\Delta}H^{\circ}=736.6cal/mol$ and ${\Delta}S^{\circ}=16.4eu$. Detailed analysis of the anomalous deviation from Curie behavior for CN/DMSO coordinated hemin complex demonstrates the presence of a high spin character, and this weaker axial field relative to the purely low-spin dicyanide hemin complex is supposed to attribute to instantaneously ruptured iron-DMSO bond. This complex may serve as a useful model to characterize electronic/molecular structure of hemoproteins, which one of axial ligands is weak.

  • PDF