• 제목/요약/키워드: NMR Spectra

Search Result 667, Processing Time 0.031 seconds

Variable Temperature High-Resolution 19F MAS Solid-State NMR Characterization of Fluorocarbon Rubbers

  • Park, Tae-Joon;Choi, Sung-Sub;Kim, Ji-Sun;Kim, Yong-Ae
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2345-2350
    • /
    • 2011
  • Variable temperature high-resolution $^{19}F$ magic angle spinning (MAS) solid-state NMR spectroscopy was used to characterize fluorocarbon (FKM) rubbers. The high-resolution spectra of copolymers made from two monomers, vinylidene fluoride and hexafluoropropene, and terpolymers composed of vinylidene fluoride, hexafluoropropene, and tetrafluoroethylene, were obtained using MAS speeds of up to 18 kHz combined with high temperatures of up to 200 $^{\circ}C$ at a magnetic field strength of 9.4 Tesla. From these high resolution solid-state NMR spectra, we were able to assign the spectral peaks and differentiate the copolymer FKM from the terpolymer FKM. We also determined quantitatively the monomer compositions of each FKM rubber.

$A^{13}$ CNMR Determination of Monomer Composition in EP Copolymers, EPB and EPDM Terpolymers (EP 공중합체, EPB 및 EPDM 삼중합체의 단량체조성에 관한 $^{13}C$-NMR 분석)

  • Lee, Kang-Bong;An, Seong-Uk;Rhee, Jae-Seong;Kweon, Jeehye;Choi, Young-Sang
    • Analytical Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.91-102
    • /
    • 1994
  • The monomer compositions in a series of propylene heterophasic copolymer, propylene random copolymer, propylene random terpolymer and ethylene-propylene-ENB terpolymer have been determined from $^{13}C-NMR$ spectra. The simplified and highly resolved $^{13}C-NMR$ spectra made it possible to assign unambiguousely and calculate the monomer composition. A complete sets of NMR chemical shift assignments and the way to measure the quantity of monomer are newly given in diverse polymers. Furthermore complete dyad, triad, tetrad and pentad distributions have been able to be determined. These NMR quantitative analytical results for monomer compostition have consistent with those from Infrared spectral data.

  • PDF

Modulation of the Specific Interaction of Cardiolipin with Cytochrome c by Zwitterionic Phospholipids in Binary Mixed Bilayers: A $^2H$-and $^{31}P$-NMR Study

  • Kim, Andre;Jeong, In-Chul;Shim, Yoon-Bo;Kang, Shin-Won;Park, Jang-Su
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.446-451
    • /
    • 2001
  • The interaction of cytochrome c with binary phospholipid mixtures was investigated by solid-state $^2H$- and $^{31}P$-NMR. To examine the effect of the interaction on the glycerol backbones, the glycerol moieties of phosphatidylcholine (PC), and cardioliph (CL) were specifically deuterated. On the binding of cytochrome c to the binary mixed bilayers, no changes in the quadrupole splittings of each of the components were observed for the PC/PG, PE/CL and PE/PG liposomes. In contrast, the splittings of CL decreased on binging of protein to the PC/CL liposomes, although those of PC did not change at all. This showed that cytochrome c specifically interacts with CL in PC/CL bilayers, and penetrates into the lipid bilayer to some extent so as to perturb the dynamic structure of the glycerol backbone. This is distinctly different from the mode of interaction of cytochrome c with other binary mixed bilayers. In the $^{31}P$-NMR spectra, line broadening and a decrease of the chemical shift anisotropy were observed on the binding of cytochrome c for all binary mixed bilayers that were examined. These changes were more significant for the PC/CL bilayers. Furthermore, the line broadening is more significant for PC than for CL in PC/CL bilayers. Therefore, it can be concluded that with the polar head groups, not only CL but also PC are involved in the interaction with cytochrome c.

  • PDF

Synthesis, Characterization and Complexation Behavior Investigations of Novel Bis- and Tris-crown Ethers

  • Huang, Zhi Bin;Kim, Sung-Hong;Chang, Seung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.6
    • /
    • pp.893-898
    • /
    • 2006
  • Novel bis- and tris-crown ethers were synthesized from 1-aza and diaza-crown ethers with 2-acryloyloxy-methyl crown ethers through Michael addition. The synthesized bis- and tris-crown ethers were characterized by their elemental analyses, $^1H$-NMR, $^{13}C$-NMR, mass spectra, IR spectra, respectively. The complexation behavior of the bis- and tris-crown ethers with $Li^+$, $Na^+$, $Na^+$, $Rb^+$, $Cs^+$ was examined by $^1H$-NMR, FAB mass, and UV spectrometry.

Paraelectric-Ferroelectric Phase Transition of (NH4)2SO4 Single Crystals by 14N NMR

  • Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.63-66
    • /
    • 2017
  • The $^{14}N$ NMR spectra for $(NH_4)_2SO_4$ crystals were obtained near the phase transition temperature $T_C=223K$, and were found to precisely reflect the symmetry change in the crystal at this first-order phase transition. Changes in the resonance frequencies near $T_C$ were attributed to the structural phase transition. In the ferroelectric and paraelectric phases, two inequivalent NH4 groups were distinguished in the $^{14}N$ NMR spectra. The two types, $NH_4$(1) and $NH_4$(2), have slightly different local environments. Consequently, we conclude that the phase transition is caused by the change in the environment of the $^{14}N$ nuclei in the $NH_4$ groups, rather than by the $SO_4$ groups.

Ab-inito and NMR Studies on the Rotational Barrier for Thioacetamide and Acetamide

  • 최영기;송근일;최영상;윤창주
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1094-1099
    • /
    • 1997
  • The rotational barriers of thioacetamide (TA) and acetamide (AA) were studied using the ab-initio molecular orbital theory and NMR spectroscopy. The calculated rotational barriers using MP2/6-31G**//MP2/6-31G** for TA was 72.26 kJ/mol and 58.19 kJ/mol for AA, respectively. These results are good agreement with the experimental data. The tendency for the change of structural parameters is consistent with the result of formamide. In both amides, the rotational barrier arises from the pyramidalization of nitrogen. The chemical shifts of both amides are shifted upfield when temperature is raised, which confirms pyramidalization of nitrogen. The lineshape of 1H-NMR spectra of TA shows quintet which is contributed from two triplet spectra. This means that the distribution of electrons around the nitrogen is rather symmetric. Ab-initio calculations of electric field gradient for both amides confirm the above results. The above experimental results are well understood by Keith's view on thioamides, which excludes the contribution of resonance structure and considers the origin of rotational barrier to be the same in both thioamides and in corresponding amides.

$^1H$ NMR Study of 4-Aminopyrimidine Coordinated to the Paramagnetic Undecatung-stocobalto(Ⅱ)silicate Anion: Rates of Internal Rotation of the Amine Group

  • 김병안;소현수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.10
    • /
    • pp.1149-1152
    • /
    • 1999
  • 1H NMR spectrum of a DMF-d7 solution containing 4-aminopyrimidine and [SiW11CoIIO39]6- (SiW11Co) shows separate peaks from two linkage isomers, a and b, in which N(1) and N(3) of the pyrimidine ring are coordinated to SiW11Co, respectively. The signal from the amine group in the isomer a exhibits temperature dependence that is characteristic of a two-site exchange problem. Rates of internal rotation of the amine group were determined by simulating the NMR spectra at 5-35℃. The amine group of free 4-aminopyrimidine also shows temperature-dependent spectra at lower temperatures; rates of internal rotation at (-25)-25℃ were determined. The internal rotation of the amine group in the complex is much slower than that for free 4-aminopyrimidine, indicating that π-character of the C-N bond increases on coordination to SiW11Co. The amine group in the isomer b does not show such behavior. It is probable that hydrogen bonding between N-H and a bridging oxygen atom of SiW11Co prevents it from rotating at low temperatures.

Solution-State Structure of Native Coenzyme F430 by NMR Methods

  • 원호식;Karl D. Olson;박지석;Ralph S. Wolfe;Dennis R. Hare;Michael F. Summers
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.649-653
    • /
    • 1995
  • Solution-state structure of native F430 was determined by using NMR methods and NMR-based distance geometry (DG) computations. Structures were generated with loose NOE-derived interproton distance restraints (2.0-2.5 Å, 2.0-3.5 Å and 2.0-4.5 Å for strong, medium, and weak NOE cross-peak intensities, respectively). 2D NOESY back-calculations of structures were subsequently carried out for establishing the consistence between experimental data and DG-model structures. The back-calculated 2D NOESY spectra of resulting DG structures were well consistent with experimental 2D NOESY spectra. Superposition of 20 independent structures with macrocyclic ring atoms and all atoms of F430 afforded pairwise root mean square deviations (RMSD) of 0.025-0.125 Å and 0.64-1.3 Å, respectively. The macrocyclic rings of structures are well converged to a unique conformation with saddle-shaped deformation whereas most of side chains are not converged. The average dihedral angle (N1-N2-N3-N4, 27.78±1.50°) of 20 DG-structures exhibits that the macrocyclic ring conformation is puckered as much as 12,13-diepimeric F430 (28.75±4.07°).

Studies on the Antifungal Antibiotics Produced by a Streptomyces sp. (Part 2) The Occurrence of trans-Cinnamamide in Streptomyces No. 297 (Streptomyces sp. 가 생산하는 항진균성 항생물질에 관한 연구(제 2 보) 항진균성 항생물질 trans-Cinnamamide의 생성)

  • Bae, Moo;Ko, Young-Hee;Lee, Hwa-Seok;Cho, Jin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.10 no.1
    • /
    • pp.39-43
    • /
    • 1982
  • t-Cinnamamide has been isolated from the culture filtrate of the isolates, Streptomyces. sp. No.297 The identity of the compound was established by UV and IR spectra, NMR, mass spectra and by chemical reactions. Through antimicrobial activity test using a two-fold serial agar dilution mothjod, t-cinnamamide showed strong growth inhibitory activity against Pellicularia sasakii, Pyriculario oryzae and some pathogenic fungi, but not inhibitory over procaryotes tested.

  • PDF

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.