• 제목/요약/키워드: NME1L

검색결과 5건 처리시간 0.016초

Characterization of Functional Domains in NME1L Regulation of NF-κB Signaling

  • You, Dong-Joo;Park, Cho Rong;Mander, Sunam;Ahn, Curie;Seong, Jae Young;Hwang, Jong-Ik
    • Molecules and Cells
    • /
    • 제39권5호
    • /
    • pp.403-409
    • /
    • 2016
  • NME1 is a well-known metastasis suppressor which has been reported to be downregulated in some highly aggressive cancer cells. Although most studies have focused on NME1, the NME1 gene also encodes the protein (NME1L) containing N-terminal 25 extra amino acids by alternative splicing. According to previous studies, NME1L has potent anti-metastatic activity, in comparison with NME1, by interacting with $IKK{\beta}$ and regulating its activity. In the present study, we tried to define the role of the N-terminal 25 amino acids of NME1L in $NF-{\kappa}B$ activation signaling. Unfortunately, the sequence itself did not interact with $IKK{\beta}$, suggesting that it may be not enough to constitute the functional structure. Further construction of NME1L fragments and biochemical analysis revealed that N-terminal 84 residues constitute minimal structure for homodimerization, $IKK{\beta}$ interaction and regulation of $NF-{\kappa}B$ signaling. The inhibitory effect of the fragment on cancer cell migration and $NF-{\kappa}B$-stimulated gene expression was equivalent to that of whole NME1L. The data suggest that the N-terminal 84 residues may be a core region for the anti-metastatic activity of NME1L. Based on this result, further structural analysis of the binding between NME1L and $IKK{\beta}$ may help in understanding the anti-metastatic activity of NME1L and provide direction to NME1L and $IKK{\beta}$-related anti-cancer drug design.

Copolymerizations of Ethylene with 1-Hexene over ansa-Metallocene Diamide Complexes

  • Kim, Il;Kwak, Chang-Hun;Son, Gi-Wan;Kim, Jae-Sung;Sinoj Abraham;Bijal K. B.;Ha, Chang-Sik;Kim, Bu-Ung;Jo, Nam-Ju
    • Macromolecular Research
    • /
    • 제12권3호
    • /
    • pp.316-321
    • /
    • 2004
  • We have performed copolymerizations of ethylene with 1-hexene using various ansa-metallocene compounds in the presence of the non-coordinative [CPh$_3$][B(C$\_$6/F$\_$5/)$_4$ion pair as a cocatalyst. The metallocenes chosen for this study are isospecific metallocene diamide compounds, rac-(EBI)Zr(NMe$_2$)$_2$ [1, EBI = ethylene-l ,2-bis(1-indenyl)], rac-(EBI)Hf(NMe$_2$)$_2$ (2), rac-(EBI)Zr(NC$_4$H$\_$8/)$_2$ (3), and rac-(CH$_3$)$_3$Si(1-C$\_$5/H$_2$-2-CH$_3$-4-$\^$t/C$_4$H$\_$9/)2 Zr(NMe$_2$)$_2$ (4), and syndiospecific metallocene dimethyl compounds, ethylidene(cyclopentadienyl)(9-fluorenyl) ZrMe$_2$ [5, Et(Flu)(Cp )ZrMe$_2$] and isopropylidence (cyclopentadienyl)(9-fluorenyl)ZrMe$_2$ [6, iPr(Flu)(Cp)ZrMe$_2$]. The copolymerization rate decreased in the order 4 >1-3>2 >5>6. The reactivity of I -hexene decreased in the order 2 >6>1- 3-5> 4. We characterized the microstructure of the resulting poly(ethylene-co-l-hexene) by $\^$l3/C NMR spectroscopy and investigated various other properties of the copolymers in detail.

Chiral [Iminophosphoranyl]ferrocenes: Synthesis, Coordination Chemistry, and Catalytic Application

  • Co, Thanh Thien;Shim, Sang-Chul;Cho, Chan-Sik;Kim, Dong-Uk;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권9호
    • /
    • pp.1359-1365
    • /
    • 2005
  • A series of new chiral [iminophosphoranyl]ferrocenes, {${\eta}^5-C_5H_4-(PPh_2=N-2,6-R_2-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-PPh^2-2-CH(Me)NMe_2$} (1: R = Me, $^iPr$), {${\eta}^5{-C_5H_4-(PPh_2=N-2,6-R_2}^1-C_6H_3)$}Fe{${\eta}^5-C_5H_3-1-(PPh_2=N-2,6-R_2-C_6H_3)-2-CH(Me)R_2$} (2: $R^1\;=\;Me,\;^iPr;\;R^2\;=\;NMe_2$, OMe), and $({\eta}^5-C_5H_5)Fe${${\eta}^5-C_5H_4-1-PR_2-2-CH(Me)N=PPh_3$} (3:R = Ph, $C_6H_{11}$) have been prepared from the reaction of [1,1'-diphenylphosphino-2-(N,N-dimethylamino) ethyl]ferrocene with arylazides (1 & 2) and the reaction of phosphine dichlorides ($R_3PCl_{2}$) with [1,1'-diphenylphosphino-2-aminoethyl]ferrocene (3), respectively. They form palladium complexes of the type $[Pd(C_3H_5)(L)]BF_4$ (4-6: L = 1-3), where the ligand (L) adopts an ${\eta}^2-N,N\;(2)\;or\;{\eta}^2$-P,N (3) as expected. In the case of 1, a potential terdentate, an ${\eta}^2$-P,N mode is realized with the exclusion of the –=NAr group from the coordination sphere. Complexes 4-6 were employed as catalysts for allylic alkylation of 1,3-diphenylallyl acetate leading to an almost stoichiometric product yield with modest enantiomeric excess (up to 74% ee). Rh(I)-complexes incorporating 1-3 were also prepared in situ for allylic alkylation of cinnamyl acetate as a probe for both regio- and enantioselectivities of the reaction. The reaction exhibited high regiocontrol in favor of a linear achiral isomer regardless of the ligand employed.

rac-(EBI) M($NMe_2$)$_2$(M=Zr, Hf)/$AlR_3$/[$Ph_3C$[$B(C_{6}F_{5})$)$_4$ 촉매를 이용한 $\alpha$-올레핀의 중합 (Polymerization of $\alpha$-Olefin Catalyzed by rac-(EBI) M($NMe_2$)$_2$(M=Zr, Hf)/$AlR_3$/[$Ph_3C$][$B(C_{6}F_{5})$)$_4$])

  • 김일;최창수;김기태
    • 폴리머
    • /
    • 제24권5호
    • /
    • pp.646-655
    • /
    • 2000
  • 이소특이성 촉매인 rac-(EBI)M($NMe_2$)$_2$ [EBI=1,2-ethylenebis-(1-indenyl); M=Zr (rac-1), M=Hf(rac-2)와 공촉매계로서 Al(iBu)$_3$/[Ph$_3$C][B($C_{6}F_{5}$)$_4$]를 이용하여 고차 $\alpha$-올레핀의 중합특성을 조사하였다. 고차 $\alpha$-올레핀의 중합은 높은 활성을 나타냈으며, rac-1과 rac-2의 두 촉매계는 유사한 중합거동을 나타냈다. 중합 활성은 단량체의 크기와 중합된 고분자 가지의 길이에 의해 영향을 받았다. 단량체의 전환율은 1-pentene>1-hexene>1-octene>1-decene의 순서로 감소하였다. 또한 합성된 폴리($\alpha$-올레핀)의 고유점도값과 시차주사열분석기에 의한 용융거동도 유사한 경향을 나타냈다. 폴리 ($\alpha$-올레핀)은 매우 높은 이소탁틱도 트리에드를 나타냈으며 poly(1-pentene)$^1H$ NMR과 Raman 스펙트럼을 이용한 고분자 사슬의 말단기 분석 결과로부터, 주로 일어나는 사슬정지반응은 말단에 포화된 메틸기를 생성하는 공촉매로의 전이이며, 소수 반응으로 비닐리덴, 삼차치환 및 비닐렌 이중결합을 생성하는 $\beta$-수소제거 반응이 일어남을 알 수 있었다.

  • PDF

Genome-wide association study for frozen-thawed sperm motility in stallions across various horse breeds

  • Nikitkina, Elena V.;Dementieva, Natalia V.;Shcherbakov, Yuri S.;Atroshchenko, Mikhail M.;Kudinov, Andrei A.;Samoylov, Oleg I.;Pozovnikova, Marina V.;Dysin, Artem P.;Krutikova, Anna A.;Musidray, Artem A.;Mitrofanova, Olga V.;Plemyashov, Kirill V.;Griffin, Darren K.;Romanov, Michael N.
    • Animal Bioscience
    • /
    • 제35권12호
    • /
    • pp.1827-1838
    • /
    • 2022
  • Objective: The semen quality of stallions including sperm motility is an important target of selection as it has a high level of individual variability. However, effects of the molecular architecture of the genome on the mechanisms of sperm formation and their preservation after thawing have been poorly investigated. Here, we conducted a genome-wide association study (GWAS) for the sperm motility of cryopreserved semen in stallions of various breeds. Methods: Semen samples were collected from the stallions of 23 horse breeds. The following semen characteristics were examined: progressive motility (PM), progressive motility after freezing (FPM), and the difference between PM and FPM. The respective DNA samples from these stallions were genotyped using Axiom Equine Genotyping Array. Results: We performed a GWAS search for single nucleotide polymorphism (SNP) markers and potential genes related to motility properties of frozen-thawed semen in the stallions of various breeds. As a result of the GWAS analysis, two SNP markers, rs1141327473 and rs1149048772, were identified that were associated with preservation of the frozen-thawed stallion sperm motility, the relevant putative candidate genes being NME/NM23 family member 8 (NME8), olfactory receptor family 2 subfamily AP member 1 (OR2AP1), and olfactory receptor family 6 subfamily C member 4 (OR6C4). Potential implications of effects of these genes on sperm motility are herein discussed. Conclusion: The GWAS results enabled us to localize novel SNPs and candidate genes for sperm motility in stallions. Implications of the study for horse breeding and genetics are a better understanding of genomic regions and candidate genes underlying stallion sperm quality, and improvement in horse reproduction and breeding techniques. The identified markers and genes for sperm cryotolerance and the respective genomic regions are promising candidates for further studying the biological processes in the formation and function of the stallion reproductive system.