• Title/Summary/Keyword: NMDA

검색결과 309건 처리시간 0.034초

Synthesis of 4,6-Dichloro-3-[(1-N-Arylaminocarbonyl)-Hydrazono]- 1,3-Dihydro-Indole-2-One as a Potential NMDA Receptor Glycine Site Antagonist

  • Hwang, Ki-Jun;Lee, Tae-Suk
    • Archives of Pharmacal Research
    • /
    • 제23권2호
    • /
    • pp.112-115
    • /
    • 2000
  • A synthetic procedure for the preparation of indole-2,3-dione derivatives 6 as a potential NMDA receptor glycine site antagonist with improved pharmacological profile compared with 2-carboxyindole derivative 5, starting from readily available 3,5-dichloroaniline (7), is described.

  • PDF

The Effect of NMDA/glycine Receptor Antagonist, 7-Chlorokynurenic Acid on Cultured Astrocytes Damaged by Ischemia-like Condition

  • 정인주
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.355-362
    • /
    • 2009
  • I evaluated the protective effect of N-methyl-D-aspartate (NMDA)/glycine receptor antagonist, 7-chlorokinurenic acid (CKA) on cultured mouse astrocytes damaged by ischemia-like condition (ILC). The protective effect of CKA was assessed by cell viability, lactate dehydrogenase (LDH) activity, superoxide dismutase (SOD)-like activity and lipid peroxidation. To examine the effect of CKA on the cell apoptosis, the expression and the activity of caspase 3 were assessed by Western blotting. CKA increased the cell viability decreased by ILC. CKA also decreased the LDH activity and antioxidative effects such as SOD-like activity and inhibitory activity of lipid peroxidation. In addition, CKA suppressed the expression of caspase 3 associated with apoptosis, and increased the cell viability by the decrease of caspase 3 activity as like the caspase 3 inhibitor, Av-DVED-MED. From these results, these results suggest that ILS induces cell cytotoxicity in cultured astrocytes and CKA, NMDA/glycine receptor antagonist, is effective on the prevention of the cytotoxicity due to ILS by the antioxidative effect and the inhibition of apoptosis.

  • PDF

우울증 치료에서 빠른 효과와 적은 부작용을 가진 새로운 N-Methyl-D-Aspartate(NMDA) 수용체 길항제 (Other N-Methyl-D-Aspartate (NMDA) Receptor Antagonists with a Rapid Onset of Action and Less Side Effect in the Treatment of Depression)

  • 최범성;이화영
    • 생물정신의학
    • /
    • 제22권4호
    • /
    • pp.149-154
    • /
    • 2015
  • Mood disorder is a common psychiatric illness with a high lifetime prevalence in the general population. Many prescribed antidepressants modulate monoamine neurotransmitters including serotonin, norepinephrine and dopamine. There has been greater focus on the major excitatory neurotransmitter in the human brain, glutamate, in the pathophysiology and treatment of major depressive disorder (MDD). Recently, ketamine, an N-methyl-D-aspartate receptor antagonist, has received attention and has been investigated for clinical trials and neurobiological studies. In this article, we will review the clinical evidence for glutamatergic dysfunction in MDD, the progress with ketamine as a rapidly acting antidepressant, and other N-methyl-D-aspartate receptor antagonist for treatment-resistant depression.

말초 및 중추신경계에서 칼슘채널 및 NMDA 매개 채널의 억제제로의 진세노사이드 Rg3의 효과 (The Effects of Ginsenoside Rg3 as a Potent Inhibitor of Ca2+ Channels and NMDA-gated Channels in the Peripheral and Central Nervous Systems)

  • 임혜원
    • Journal of Ginseng Research
    • /
    • 제27권3호
    • /
    • pp.120-128
    • /
    • 2003
  • Alternative medicines such as herbal products are increasingly being used for preventive and therapeutic purposes. Ginseng is the best known and most popular herbal medicine used worldwide. In spite of some beneficial effects of ginseng on the nervous system, little scientific evidence shows at the cellular level. In the present study, I have examined the direct modulation of ginseng total saponins and individual ginsenosides on the activation of $Ca^{2+}$ channels and NMDA-gated channels in cultured rat dorsal root ganglion (DRG) and hippocampal neurons, respectively. In DRG neurons, application of ginseng total saponins suppressed high-voltage-activated $Ca^{2+}$ channel currents and ginsenoside Rg$_3$, among the 11 ginsenosides tested, produced the strongest inhibition on $Ca^{2+}$ channel currents. Occlusion experiments using selective $Ca^{2+}$ channel blockers revealed that ginsenoside Rg$_3$ could modulate L-, N-, and P/Q-type currents. In addition, ginsenoside Rg$_3$ also proved to be an active component of ginseng actions on NMDA receptors in cultured hippocampal neurons. Application of ginsenoside Rg$_3$ suppressed NMDA-induced [Ca$^{2+}$]$_{i}$ increase and -gated channels using fura-2-based digital imaging and patch-clamp techniques, respectively. These results suggest that the modulation of $Ca^{2+}$ channels and NMDA receptors by ginsenoside Rg$_3$ could be part of the pharmacological basis of ginseng actions in the peripheral and central nervous systems.ous systems.

Calcium Modulates Excitatory Amino Acid (EAA)- and Substance P-induced Rat Dorsal Horn Cell Responses

  • Shin, Hong-Kee;Kang, Sok-Han;Chung, In-Duk;Kim, Kee-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제3권1호
    • /
    • pp.35-45
    • /
    • 1999
  • Excitatory amino acid (EAA) and substance P (SP) have been known to be primary candidates for nociceptive neurotransmitter in the spinal cord, and calcium ions are implicated in processing of the sensory informations mediated by EAA and SP in the spinal cord. In this study, we examined how $Ca^{2+}$ modified the responses of dorsal horn neurons to single or combined iontophoretical application of EAA and SP in the rat. All the LT cells tested responded to kainate, whereas about 55% of low threshold (LT) cells responded to iontophoretically applied NMDA. NMDA and kainate excited almost all wide dynamic range (WDR) cells. These NMDA- and kainate-induced WDR cell responses were augmented by iontophoretically applied EGTA, but suppressed by $Ca^{2+},\;Mn^{2+},$ verapamil and ${\omega}-conotoxin$ EVTA, effect of verapamil being more prominent and well sustained. $Ca^{2+}$ and $Mn^{2+}$ antagonized the augmenting effect of EGTA. On the other hand, prolonged spinal application of EGTA suppressed the response of WDR cell to NMDA. SP had triple effects on the spontaneous activity as well as NMDA-induced responses of WDR cells: excitation, inhibition and no change. EGTA augmented, but $Ca^{2+},\;Mn^{2+}$ and verapamil suppressed the increase in the NMDA-induced responses and spontaneous activities of WDR cells following iontophoretical application of SP. These results suggest that in the spinal cord, sensory informations mediated by single or combined action of EAA and SP can be modified by the change in calcium ion concentration.

  • PDF

Neuronal injury in AIDS dementia: Potential treatment with NMDA open-channel blockers and nitric oxide-related species

  • Lipton, Stuart A.
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.19-29
    • /
    • 1996
  • The neurological manifestations of AIDS include dementia, encountered even in the absence of opportunistic superinfection or malignancy. The AIDS Dementia Complex appears to be associated with several neuropathological abnormalities, including astrogliosis and neuronal injury or loss. How can HIV-1 result in neuronal damage if neurons themselves are only rarely, if ever, infected by the vitus\ulcorner In vitro experiments from several different laboratiories have lent support to the existence of HIV- and immune-related toxins. In one recently defined pathway to neuronal injury, HIV-infected macrophages/microglia as well as macrophages activated by HIV-1 envelope protein gp120 appear to secrete excitants/neurotoxins. These substances may include arachidonic acid, platelet-activating factor, free radicals (NO - and O$_2$), glutamate, quinolinate, cysteine, cytokines (TNF-${\alpha}$, IL1-B, IL-6), and as yet unidentified factors emanating from stimulated macrophages and possibly reactive astrocytes. A final common pathway for newonal suscepubility appears to be operative, similar to that observed in stroke, trauma, epilepsy, and several neurodegenerative diseases, including Huntington's disease, Parkinson's disease, and amyotrophic lateral sclerosis. This mechanism involves excessive activation of N-methyl-D-aspartate (NMDA) receptor-operated channels, with resultant excessive influx of Ca$\^$2+/ leading to neuronal damage, and thus offers hope for future pharmacological intervention. This chapter reviews two clinically-tolerated NMDA antagonists, memantine and nitroglycerin; (ⅰ) Memantine is an open-channel blocker of the NMDA-associated ion channel and a close congener of the anti-viral and anti-parkinsonian drug amantadine. Memantine blocks the effects of escalating levels of excitotoxins to a greater degree than lower (piysiological) levels of these excitatory amino acids, thus sparing to some extent normal neuronal function. (ⅱ) Niuoglycerin acts at a redox modulatory site of the NMDA receptor/complex to downregulate its activity. The neuroprotective action of nitroglycerin at this site is mediated by n chemical species related to nitric oxide, but in a higher oxidation state, resulting in transfer of an NO group to a critical cysteine on the NMDA receptor. Because of the clinical safety of these drugs, they have the potential for trials in humans. As the structural basis for redox modulation is further elucidated, it may become possible to design even better redox reactive reagents of chinical value. To this end, redox modulatory sites of NMDA receptors have begun to be characterized at a molecular level using site-directed mutagenesis of recombinant subunits (NMDAR1, NMDAR2A-D). Two types of redox modulation can be distinguished. The first type gives rise to a persistent change in the functional activity of the receptor, and we have identified two cysteine residues on the NMDARI subunit (#744 and #798) that are responsible for this action. A second site, presumably also a cysteine(s) because <1 mM N-ethylmaleimide can block its effect in native neurons, underlies the other, more transient redox action. It appears to be at this, as yet unidentified, site on the NMDA receptor that the NO group acts, at least in recombinant receptors.

  • PDF

Development of New NMDA Receptor Agonists/Antagonists

  • Park, No-Sang
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.72-74
    • /
    • 2003
  • Excitatory amino acid (EAA) receptor, particularly NMDA receptor, are now known to be one of major transmitter receptors involved in synaptic excitation. Excessive release of EAA neurotransmitter, glutamate, is an important causative factor in the neurodegenerative processes and can cause neuronal damage and cell death. This excitotoxicity has been shown to be $Ca^{++}$ dependent. (omitted)

  • PDF

Effect of Spinally Administered Ginseng Total Saponin on Capsaicin-Induced Pain and Excitatory Amino Acids-Induced Nociceptive Responses

  • Nah Jin-Ju;Choi Seok;Kim Yoon-Hee;Kim Seok-Chang;Nam Ki-Yeul;Kim Jong-Keun;Nah Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제23권1호
    • /
    • pp.38-43
    • /
    • 1999
  • 진세노사이드(ginseng total saponin)는 인삼의 주요 약리학적 성분이다. 본 연구는 척수강내로 투여된 진세노사이드가 캡사이신에 의하여 유도된 통증을 억제하는가를 연구하였다. 진세노사이드의 척수강내 전투여는 캡사이신에 의하여 유도되는 통증을 투여 용량에 의존적으로 억제하였다. 통증 억제 효과를 나타내는 $ED_{50}$은 43 ${mu}g/mouse$ 이었다. 흥분성 아미노산들도 척수 수준에서 통증전달에 포함되기 때문에 본 연구에서는 또한 진세노사이드가 흥분성 아미노산에 의하여 유도되는 아픈 행동(nociceptive behaviors)을 억제하는 가를 연구하였다. 진세노사이드와 NMDA를 같이 투여할 경우 NMDA를 단독 투여할 때 나타나는 아픈 행동을 억제하는 것으로 나타났다. 진세노사이드가 NMDA에 의하여 나타나는 아픈 행동을 억제하는 $ED_{50}$은 37 ${mu}g/mouse$ 이었다. 그러나 진세노사이드는 kainate투여에 의하여 나타나는 아픈 행동을 억제하지 않은 것으로 나타났다. 이러한 연구 결과들은 진세노사이드에 의한 항통증 효능중의 하나는 척수 수준에서 통증 전달 물질에 의하여 유도되는 통증 전달 정보의 선택적 억제에 의하여 이루어진다는 것을 보여준다.

  • PDF

해마 조직 절편 배양을 이용한 무산소 손상에 대한 MK-801, CNQX, Cycloheximide 및 BAPTA-AM의 효과 (Effects of MK-801, CNQX, Cycloheximide and BAPTA-AM on Anoxic Injury of Hippocampal Organotypic Slice Culture)

  • 문수현;권택현;박윤관;정흥섭;서중근
    • Journal of Korean Neurosurgical Society
    • /
    • 제29권8호
    • /
    • pp.1008-1018
    • /
    • 2000
  • Objective : Glutamate induced excitotoxicity is one of the leading causes of cell death under pathologic condition. However, there is controversy whether excitotoxicity may also participate in the neuronal death under low intensity insult such as simple hypoxia or hypoglycemia. To investigate the role of NMDA receptor in low intensity insult, we chose anoxia as the method of injury and used organotypically cultured hippocampal slice as the material of experiment. Materials & Methods : The hippocampal slices cultured for 2-3 weeks were exposed to 60 minutes of complete oxygen deprivation(anoxia). Neuronal death was assessed with Sytox stain. Corrected optical density of fluorescence in gray scale, used as cellular death indicator, was obtained from pictures taken at 24 and 48 hours following the insult. The well-known in vivo phenomenon of regional difference in susceptibility of hippocampal sub-fields to ischemic insult was reproduced in HOSC(hippocampal organotypic slice culture) by complete oxygen deprivation injury. Results : $CA_1$ was the most vulnerable to complete oxygen deprivation in hippocampus while $CA_3$ was resistant. Oxygen deprivation for 10 and 20 minutes with glucose(6.5g/l) present was insufficient to induce neuronal death in the cultured hippocampal slice. However, after 30 minutes exposure under anoxic condition, neuronal death was able to be detected in the center of $CA_1$ area. The intensity and area of fluorescence indicating cell death correlated with the duration of oxygen deprivation. NMDA receptor and non-NMDA receptor blocking with MK-801(30 & $60{\mu}M$) and CNQX($100{\mu}M$) did not provide cellular protection to HOSC against damage induced by oxygen deprivation, but increased intracellular calcium buffering capacity with BAPTA-AM($10{\mu}M$) was effective in preventing neuronal death (p=0.01, Student's t-test). Cycloheximide($1{\mu}g/ml$, $10{\mu}g/ml$) provided no protection to HOSC against insult of complete oxygen deprivation for 60 minutes and combined therapy of MK-801(30 & $60{\mu}M$) and cycloheximide(1 & $10{\mu}g/ml$) was also ineffective in preventing neuronal death. Conclusion : The results of this study show that the another mechanism not associated with glutamate receptor(NMDA & non NMDA) may play major role in cell death mechanisms induced by complete oxygen deprivation and increased intracellular calcium during anoxia may participate in the neuronal death mechanism of oxygen deprivation. Further investigation of the calcium entry channel activated during oxygen deprivation is necessary to understand the neuronal death of anoxia.

  • PDF