• 제목/요약/키워드: NIRS

검색결과 269건 처리시간 0.023초

근적외선분광법을 이용한 이탈리안 라이그라스, 페레니얼 라이그라스,톨 페스큐 종자의 초종 판별 (Discrimination of Pasture Spices for Italian Ryegrass, Perennial Ryegrass and Tall Fescue Using Near Infrared Spectroscopy)

  • 박형수;최기춘;김지혜;소민정;이기원;이상훈
    • 한국초지조사료학회지
    • /
    • 제35권2호
    • /
    • pp.125-130
    • /
    • 2015
  • 본 연구는 근적외선분광법을 이용하여 우리나라에서 재배되고 있는 목초류 중 외형적 특성이 유사한 이탈리안 라이그라스, 페레니얼 라이그라스와 톨 페스큐 종자의 초종판별 가능성을 검토하고자 수행되었다. 근적외선분광기를 이용하여 목초류 종자를 가시파장 대역대(680~1,099 nm), NIRS 파장 대역대(1,100-2,500 nm) 및 NIRS 전체 파장 대역대(680-2,500 nm)로 구분하여 스펙트라를 얻은 후 1차 미분과 8 nm gap으로 수 처리를 수행하였으며 부분최소자승(PLS) 회귀분석법을 통해 초종판별 검량식을 개발하고 판별 정확성을 검증하였다. 목초류의 초종판별 정확성은 가시파장대역에서 SECV 1.732, $R^2cv$ 0.96으로 가장 판별 정확성이 낮았으며 NIRS 전체 파장대역에서 SECV 1.182, $R^2cv$ 0.98로 가장 높은 판별 정확성을 나타내었다. 파장대역별 예측 정확성은 NIR 파장대역(1,100-2,500 nm)에서 교차검증오차(SECV) 1.319에서 예측 오차(SEP) 1.288로 낮아졌으며 가시영역대(680~1,099)는 SECV 1.732에서 SEP 1.749로 약간 높아졌다. Discrimination equation 분석법에 의한 NIRS 전체 파장대역별 목초류 초종의 판별 결과는 초종간에 판별 정확성의 차이가 크게 나타났으며 이탈리안 라이그라스의 'Hits'는 68%로 가장 낮았으며 페레니얼 라이그라스가 78%의 정확성으로 가장 높게 나타났다. 따라서 NIRS를 이용한 목초류 초종의 판별분석이 가능할 것으로 판단되었다.

THE USE OF NEAR INFRARED REFLECTANCE SPECTROSCOPY(NIRS) TO PREDICT CHEMICAL COMPOSITION ON MAIZE SILAGE

  • D.Cozzolino;Fassio, A.;Mieres, J.;Y.Acosta
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.1610-1610
    • /
    • 2001
  • Microbiological examination of silage is of little value in gauging the outcome of silage, and so chemical analysis is more reliable and meaningful indicator of quality. On the other hand chemical assessments of the principal fermentation products provide an unequivocal basis on which to judge quality. Livestock require energy, protein, minerals and vitamins from their food. While fresh forages provide these essential items, conserved forages on the other hand may be deficient in one or more of them. The aim of the conservation process is to preserve as many of the original nutrients as possible, particularly energy and protein components (Woolford, 1984). Silage fermentation is important to preservation of forage with respect of feeding value and animal performance. Chemical and bacteriological changes in the silo during the fermentation process can affect adversely nutrient yield and quality (Moe and Carr, 1984). Many of the important chemical components of silage must be assayed in fresh or by extraction of the fresh material, since drying either by heat or lyophilisation, volatilises components such as acids or nitrogenous components, or effects conversion to other compounds (Abrams et al., 1987). Maize silage dorms the basis of winter rations for the vast majority of dairy and beef cattle production in Uruguay. Since nutrient intake, particularly energy, from forages is influenced by both voluntary dry matter intake and digestibility; there is a need for a rapid technique for predicting these parameters in farm advisory systems. Near Infrared Reflectance Spectroscopy (NIRS) is increasingly used as a rapid, accurate method of evaluating chemical constituents in cereals and dried forages. For many years NIRS was applied to assess chemical composition in dry materials (Norris et al., 1976, Flinn et al., 1992; Murray, 1993, De Boever et al., 1996, De la Roza et al., 1998). The objectives of this study were (1) to determine the potential of NIRS to assess the chemical composition of dried maize samples and (2) to attempt calibrations on undried samples either for farm advisory systems or for animal nutrition research purposes in Uruguay. NIRS were used to assess the chemical composition of whole - plant maize silage samples (Zea mays, L). A representative population of samples (n = 350) covering a wide distribution in chemical characteristics were used. Samples were scanned at 2 nm intervals over the wavelength range 400-2500 nm in a NIRS 6500 (NIRSystems, Silver Spring, MD, USA) in reflectance mode. Cross validation was used to avoid overfitting of the equations. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV). The calibration statistics were R$^2$ 0. 86 (SECV: 11.4), 0.90 (SECV: 5.7), 0.90 (SECV: 16.9) for dry matter (DM), crude protein (CP), acid detergent fiber (ADF) in g kg$\^$-1/ on dry matter, respectively for maize silage samples. This work demonstrates the potential of NIRS to analyse whole - maize silage in a wide range of chemical characteristics for both advisory farm and nutritive evaluation.

  • PDF

Studies on pharmaceutical assay method using Near Infrared Spectroscopy (NIRS) (II)

  • Kang, Shin-Jung;Yun, Mi-Ok;Lee, Su-Jung;Choi, Hyun-Chul;Kim, Ho-Jeong;Kim, Ji-Yeon
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.4113-4113
    • /
    • 2001
  • This study developed effective assay method of pharmaceutical quality control was developed by near-infrared spectroscopy (NIRS). The calibration equation model of assay was developed by 2nd deriviative PLS(Partial Least Squares) regression method with NIRS over the wavelength range from 1100 to 1400nm using diazepam tablets (2mg, 5mg). Although diazepam tablets are made by 5-different manufacture, they have similar formulation. When the correlation was compared with values by NIRS and HPLC, the R-2s and standard error of calibration (SEC) for 2mg were 0.9300 and 0.98%, the R-2s and SEC for 5mg were 0.9165 and 0.63%. The validation of the calibration equation model yield that the R-2s and standard error of prediction (SEP) for 2mg were 0.9611 and 0.995%, the R-2s and SEP for 5mg were 0.9114 and 0.842%. The method was validated on assay method for diazepam tablets by the calibration equation.

  • PDF

Mental Task 수행에 의한 전전두엽 활성 영역의 fNIRS 기반 추정 (The Estimation of Activated Prefrontal Brain Area due to The Execution of Mental Tasks using fNIRS)

  • 홍승혁;이종민;허정;백현재;박광석
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권5호
    • /
    • pp.177-182
    • /
    • 2015
  • The activation of prefrontal cortex of brain during some mental tasks like mental arithmetic induce has been studied using hemodynamic imaging modalities. In this study, we focused on the differentiation of activated area in local prefrontal brain caused by the different mental activities as well as evaluating the classification accuracy of in-house fNIRS system. The study preliminarily validated the device including the signal quality and tightness of contact between detectors and prefrontal area. Experimental results of mental tasks on 5 subjects showed the subject dependent tendencies in correlated prefrontal activation and the area of highest accuracy.

근외적 분광분석법을 이용한 담배 중 전휘발성염기 분석 (Determination of Total Volatile Bases of Tobacco Using Near Infrared Spectroscopy)

  • 김용옥;장기철;이철희;정한주
    • 한국연초학회지
    • /
    • 제27권2호
    • /
    • pp.207-211
    • /
    • 2005
  • This study was carried out to develop calibration equation of total volatile bases of tobacco leaf using near infrared spectroscopy(NIRS). Burley, imported flue-cured and oriental leaf tobacco samples were collected in 2005 crop year. Calibration equation was developed by modified partial least square method. The standard error of calibration and $R^2$ between traditional analytical method and NIRS analytical method were $0.038\%$, 0.983 for burley and $0.027\%$, 0.986 for imported flue-cured and oriental leaf, respectively. The standard error of performance and $R^2$ between traditional analytical method and NIRS analytical method were $0.048\%$, 0.940 for burley and $0.024\%$, 0.986 for imported flue-cured and oriental leaf, respectively. From these results, the NIRS analytical method seems to be applicable in analyzing total volatile bases of tobacco.

Studies on 5 Protein Fractions Prediction of Forage Legume Mixture by NIRS

  • Lee, Hyo-Won;Jang, Sungkwon;Lee, Hyo-Jin;Park, Hyung-Soo
    • 한국초지조사료학회지
    • /
    • 제34권3호
    • /
    • pp.214-218
    • /
    • 2014
  • This study was conducted to assess the feasibility of near-infrared reflectance spectroscopy (NIRS) as a rapid and reliable method for the estimation of crude protein (CP) fractions in forage legume mixtures (sudangrass and pea mixture, and kidney bean and potato mixture). A total of 178 samples were collected and their spectral reflectance obtained in the range of 400~2,500 nm. Of these, 50 samples were selected for calibration and validation, and 35 samples were used for calibration of the data set, and the modified partial least square regression (MPLSR) analysis was performed. The correlation coefficient ($r^2$) and the standard error of cross-validation (SECV) of the calibration models in the CP fractions, A, B1, B2, B3, and C, were 0.94 (1.05), 0.92 (0.74), 0.96 (0.95), 0.91 (0.42), and 0.83 (0.38), respectively. Fifteen samples were used for equation validation, and the $r^2$ and the standard error of prediction (SEP) were 0.87 (1.45), 0.91 (0.49), 0.94 (1.13), 0.36 (0.96), and 0.74 (0.67), respectively. This study showed that NIRS could be an effective tool for the rapid and precise estimation of CP fractions in forage legume mixtures.

Hemodynamic Responses of Rat Brain Measured by Near-infrared Spectroscopy During Various Whisker Stimulations

  • Lee, Seung-Duk;Koh, Dalk-Won;Kwon, Ki-Woon;Lee, Hyun-Joo;Lang, Yiran;Shin, Hyung-Cheul;Kim, Beop-Min
    • Journal of the Optical Society of Korea
    • /
    • 제13권1호
    • /
    • pp.166-170
    • /
    • 2009
  • NIRS (Near-infrared spectroscopy) is a relatively, new, non-invasive, and non-ionizing method of measuring hemodynamic responses in thick biological tissues such as the cerebral cortex. In this study, we measured the hemodynamic responses of the rat barrel cortex to whisker stimulation by using a frequency-domain NIRS system. We designed multiple optical probes comprising multi-mode optical fibers and manipulating arms, both of which can be easily applied to small animals. Various electrical stimulations were applied to rat whiskers at different voltage levels and stimulation frequencies. Our results show that the hemodynamic responses are highly dependent on the stimulation voltage level, and not so much on stimulation frequency. This paper suggests that NIRS technology is highly suitable for the study of small animal brains.

NEAR INFRARED TRANSFLECTANCE SPECTROSCOPY (NIRS) IN PHYTOCHEMISTRY

  • Huck, C.W.;W.Guggenbichler;Bonn, G.K.
    • 한국근적외분광분석학회:학술대회논문집
    • /
    • 한국근적외분광분석학회 2001년도 NIR-2001
    • /
    • pp.3114-3114
    • /
    • 2001
  • During the last years phytochemistry and phytopharmaceutical applications have developed rapidly and so there exists a high demand for faster and more efficient analysis techniques. Therefore we have established a near infrared transflectance spectroscopy (NIRS) method that allows a qualitative and quantitative determination of new polyphenolic pharmacological active leading compounds within a few seconds. As the NIR spectrometer has to be calibrated the compound of interest has at first to be characterized by using one or other a combination of chromatographic or electrophoretic separation techniques such as thin layer chromatography (TLC), high performance liquid chromatography (HPLC), capillary electrophoresis (CE), gas chromatography (GC) and capillary electrochromatography (CEC). Both structural elucidation and quantitative analysis of the phenolic compound is possible by direct coupling of the mentioned separation methods with a mass spectrometer (GC-MS, LC-MS/MS, CE-MS, CEC-MS) and a NMR spectrometer (LC-NMR). Furthermore the compound has to be isolated (NPLC, MPLC, prep. TLC, prep. HPLC) and its structure elucidated by spectroscopic techniques (UV, IR, HR-MS, NMR) and chemical synthesis. After that HPLC can be used to provide the reference data for the calibration step of the near infrared spectrometer. The NIRS calibration step is time consuming, which is compensated by short analysis times. After validation of the established NIRS method it is possible to determine the polyphenolic compound within seconds which allows to raise the efficiency in quality control and to reduce costs especially in the phytopharmaceutical industry.

  • PDF

Prefrontal Cortex Activation during Diaphragmatic Breathing in Women with Fibromyalgia: An fNIRS Case Report

  • Hyunjoong Kim;Jihye Jung;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • 제12권3호
    • /
    • pp.334-339
    • /
    • 2023
  • Objective: The present study is designed to delve deeper into the realm of fibromyalgia (FM) symptom management by investigating the effects of diaphragmatic breathing on the prefrontal cortex (PFC) in women diagnosed with FM. Using functional near-infrared spectroscopy (fNIRS), the study aims to capture real-time PFC activation patterns during the practice of diaphragmatic breathing. The overarching objective is to identify and understand the underlying neural mechanisms that may contribute to the observed clinical benefits of this relaxation technique. Design: A case report Methods: To achieve this, a twofold approach was adopted: First, the patient's breathing patterns were meticulously examined to detect any aberrations. Following this, fNIRS was employed, focusing on the activation dynamics within the PFC. Results: Our examination unveiled a notable breathing pattern disorder inherent to the FM patient. More intriguingly, the fNIRS analysis offered compelling insights: the ventrolateral prefrontal cortex (VLPFC) displayed increased activation. In stark contrast, regions of the anterior prefrontal cortex (aPFC) and orbitofrontal cortex (OFC) manifested decreased activity, especially when benchmarked against typical activations seen in healthy adults. Conclusions: These findings, derived from a nuanced examination of FM, underscore the condition's multifaceted nature. They highlight the imperative to look beyond conventional symptomatology and appreciate the profound neurological and physiological intricacies that define FM.

Measurement of lipid content of compost fermentation using near-infrared spectroscopy

  • Daisuke Masui;Suehara, Ken-ichiro;Yasuhisa Nakano;Takuo Yano
    • Near Infrared Analysis
    • /
    • 제2권1호
    • /
    • pp.37-42
    • /
    • 2001
  • Near infrared spectroscopy (NIRS) was applied to determination of the lipid content of the compost during the compost fermentation of tofu (soybean0curd) refuse. The absorption of lipid observed at 5 wavelengths, 1208, 1712, 1772, 2312 and 2352 nm on the second derivative spectra. To formulated a calibration equation, a multiple linear regression analysis was carried out between the near-infrared spectral data and on the lipid content in the calibration sample set (sample number, n=60) obtained using Soxhlet extraction method. The value of the multiple correlation coefficient (R) was 0.975 when using the wavelengths of 1208 and 1712 nm were used in the calibration equation. To validate the calibration equation obtained, the lipid content in the validation sample set (n=35) not used for formulating the calibration equation was calculated using the calibration equation, and compared with the value obtained using the Soxhlet extraction method. Good agreement was observed between the results of the Soxhlet extraction method and those values of the NIRS method. The simple correlation coefficient (r) and standard error of prediction (SEP) were 0.964 and 0.815 %, respectively. suitability of the lipid content as an indicator of the compost fermentation of tofu refuse was also studied. The decrease of the lipid content in the compost corresponded to the decrease of the total dry weight of the compost in the composter. The lipid content was a significant indicator of the compost fermentation. The NIRS method was applied to measure the time course of the lipid content in the compost fermentation and good results were obtained. The study indicates that NIRS is a useful method for process management of the compost fermentation of tofu refuse.