• Title/Summary/Keyword: NIR spectroscopy

Search Result 465, Processing Time 0.021 seconds

NIRS AS AN ESSENTIAL TOOL IN FOOD SAFETY PROGRAMS: FEED INGREDIENTS PREDICTION H COMMERCIAL COMPOUND FEEDING STUFFS

  • Varo, Ana-Garrido;MariaDoloresPerezMarin;Cabrera, Augusto-Gomez;JoseEmilioGuerrero Ginel;FelixdePaz;NatividadDelgado
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1153-1153
    • /
    • 2001
  • Directive 79/373/EEC on the marketing of compound feeding stuffs, provided far a flexible declaration arrangement confined to the indication of the feed materials without stating their quantity and the possibility was retained to declare categories of feed materials instead of declaring the feed materials themselves. However, the BSE (Bovine Spongiform Encephalopathy) and the dioxin crisis have demonstrated the inadequacy of the current provisions and the need of detailed qualitative and quantitative information. On 10 January 2000 the Commission submitted to the Council a proposal for a Directive related to the marketing of compound feeding stuffs and the Council adopted a Common Position (EC N$^{\circ}$/2001) published at the Official Journal of the European Communities of 2. 2. 2001. According to the EC (EC N$^{\circ}$ 6/2001) the feeds material contained in compound feeding stufs intended for animals other than pets must be declared according to their percentage by weight, by descending order of weight and within the following brackets (I :< 30%; II :> 15 to 30%; III :> 5 to 15%; IV : 2% to 5%; V: < 2%). For practical reasons, it shall be allowed that the declarations of feed materials included in the compound feeding stuffs are provided on an ad hoc label or accompanying document. However, documents alone will not be sufficient to restore public confidence on the animal feed industry. The objective of the present work is to obtain calibration equations fur the instanteneous and simultaneous prediction of the chemical composition and the percentage of ingredients of unground compound feeding stuffs. A total of 287 samples of unground compound feeds marketed in Spain were scanned in a FOSS-NIR Systems 6500 monochromator using a rectangular cup with a quartz window (16 $\times$ 3.5 cm). Calibration equations were obtained for the prediction of moisture ($R^2$= 0.84, SECV = 0.54), crude protein ($R^2$= 0.96, SECV = 0.75), fat ($R^2$= 0.86, SECV = 0.54), crude fiber ($R^2$= 0.97, SECV = 0.63) and ashes ($R^2$= 0.86, SECV = 0.83). The sane set of spectroscopic data was used to predict the ingredient composition of the compound feeds. The preliminary results show that NIRS has an excellent ability ($r^2$$\geq$ 0, 9; RPD $\geq$ 3) for the prediction of the percentage of inclusion of alfalfa, sunflower meal, gluten meal, sugar beet pulp, palm meal, poultry meal, total meat meal (meat and bone meal and poultry meal) and whey. Other equations with a good predictive performance ($R^2$$\geq$0, 7; 2$\leq$RPD$\leq$3) were the obtained for the prediction of soya bean meal, corn, molasses, animal fat and lupin meal. The equations obtained for the prediction of other constituents (barley, bran, rice, manioc, meat and bone meal, fish meal, calcium carbonate, ammonium clorure and salt have an accuracy enough to fulfill the requirements layed down by the Common Position (EC Nº 6/2001). NIRS technology should be considered as an essential tool in food Safety Programs.

  • PDF

Development of Near-Infrared Reflectance Spectroscopy (NIRS) Model for Amylose and Crude Protein Contents Analysis in Rice Germplasm (근적외선 분광광도계를 이용한 벼 유전자원 아밀로스 및 단백질 함량분석을 위한 모델개발)

  • Oh, Sejong;Lee, Myung Chul;Choi, Yu Mi;Lee, Sukyeung;Oh, Myeongwon;Ali, Asjad;Chae, Byungsoo;Hyun, Do Yoon
    • Korean Journal of Plant Resources
    • /
    • v.30 no.1
    • /
    • pp.38-49
    • /
    • 2017
  • The objective of this research was to develop Near-Infrared Reflectance Spectroscopy (NIRS) model for amylose and protein contents analysis of large accessions of rice germplasm. A total of 511 accessions of rice germplasm were obtained from National Agrobiodiversity Center to make calibration equation. The accessions were measured by NIRS for both brown and milled brown rice which was additionally assayed by iodine and Kjeldahl method for amylose and crude protein contents. The range of amylose and protein content in milled brown rice were 6.15-32.25% and 4.72-14.81%, respectively. The correlation coefficient ($R^2$), standard error of calibration (SEC) and slope of brown rice were 0.906, 1.741, 0.995 in amylose and 0.941, 0.276, 1.011 in protein, respectively, whereas $R^2$, SEC and slope of milled brown rice values were 0.956, 1.159, 1.001 in amylose and 0.982, 0.164, 1.003 in protein, respectively. Validation results of this NIRS equation showed a high coefficient determination in prediction for amylose (0.962) and protein (0.986), and also low standard error in prediction (SEP) for amylose (2.349) and protein (0.415). These results suggest that NIRS equation model should be practically applied for determination of amylose and crude protein contents in large accessions of rice germplasm.

Construction of Database System on Amylose and Protein Contents Distribution in Rice Germplasm Based on NIRS Data (벼 유전자원의 아밀로스 및 단백질 성분 함량 분포에 관한 자원정보 구축)

  • Oh, Sejong;Choi, Yu Mi;Lee, Myung Chul;Lee, Sukyeung;Yoon, Hyemyeong;Rauf, Muhammad;Chae, Byungsoo
    • Korean Journal of Plant Resources
    • /
    • v.32 no.2
    • /
    • pp.124-143
    • /
    • 2019
  • This study was carried out to build a database system for amylose and protein contents of rice germplasm based on NIRS (Near-Infrared Reflectance Spectroscopy) analysis data. The average waxy type amylose contents was 8.7% in landrace, variety and weed type, whereas 10.3% in breeding line. In common rice, the average amylose contents was 22.3% for landrace, 22.7% for variety, 23.6% for weed type and 24.2% for breeding line. Waxy type resources comprised of 5% of the total germplasm collections, whereas low, intermediate and high amylose content resources share 5.5%, 20.5% and 69.0% of total germplasm collections, respectively. The average percent of protein contents was 8.2 for landrace, 8.0 for variety, and 7.9 for weed type and breeding line. The average Variability Index Value was 0.62 in waxy rice, 0.80 in common rice, and 0.51 in protein contents. The accession ratio in arbitrary ranges of landrace was 0.45 in amylose contents ranging from 6.4 to 8.7%, and 0.26 in protein ranging from 7.3 to 8.2%. In the variety, it was 0.32 in amylose ranging from 20.1 to 22.7%, and 0.51 in protein ranging from 6.1 to 8.3%. And also, weed type was 0.67 in amylose ranging from 6.6 to 9.7%, and 0.33 in protein ranging from 7.0 to 7.9%, whereas, in breeding line it was 0.47 in amylose ranging from 10.0 to 12.0%, and 0.26 in protein ranging from 7.0 to 7.9%. These results could be helpful to build database programming system for germplasm management.

THE EFFECT OF THE REPEATABILITY FILE IN THE NIRS EATTY ACIDS ANALYSIS OF ANIMAL EATS

  • Perez Marin, M.D.;De Pedro, E.;Garcia Olmo, J.;Garrido Varo, A.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.4107-4107
    • /
    • 2001
  • Previous works have shown the viability of NIRS technology for the prediction of fatty acids in Iberian pig fat, but although the resulting equations showed high precision, in the predictions of new samples important fluctuations were detected, greater with the time passed from calibration development to NIRS analysis. This fact makes the use of NIRS calibrations in routine analysis difficult. Moreover, this problem only appears in products like fat, that show spectrums with very defined absorption peaks at some wavelengths. This circumstance causes a high sensibility to small changes of the instrument, which are not perceived with the normal checks. To avoid these inconveniences, the software WinISI 1.04 has a mathematic algorithm that consist of create a “Repeatability File”. This file is used during calibration development to minimize the variation sources that can affect the NIRS predictions. The objective of the current work is the evaluation of the use of a repeatability file in quantitative NIRS analysis of Iberian pig fat. A total of 188 samples of Iberian pig fat, produced by COVAP, were used. NIR data were recorded using a FOSS NIRSystems 6500 I spectrophotometer equipped with a spinning module. Samples were analysed by folded transmission, using two sample cells of 0.1mm pathlength and gold surface. High accuracy calibration equations were obtained, without and with repeatability file, to determine the content of six fatty acids: miristic (SECV$\sub$without/=0.07% r$^2$$\sub$without/=0.76 and SECV$\sub$with/=0.08% r$^2$$\sub$with/=0.65), Palmitic (SECV$\sub$without/=0.28 r$^2$$\sub$without/=0.97 and SECV$\sub$with/=0.24% r$^2$$\sub$with/=0.98), palmitoleic (SECV$\sub$without/=0.08 r$^2$$\sub$without/=0.94 and SECV$\sub$with/=0.09% r$^2$$\sub$with/=0.92), Stearic (SECV$\sub$without/=0.27 r$^2$$\sub$without/=0.97 and SECV$\sub$with/=0.29% r$^2$$\sub$with/=0.96), oleic (SECV$\sub$without/=0.20 r$^2$$\sub$without/=0.99 and SECV$\sub$with/=0.20% r$^2$$\sub$with/=0.99) and linoleic (SECV$\sub$without/=0.16 r$^2$$\sub$without/=0.98 and SECV$\sub$with/=0.16% r$^2$$\sub$with/=0.98). The use of a repeatability file like a tool to reduce the variation sources that can disturbed the prediction accuracy was very effective. Although in calibration results the differences are negligible, the effect caused by the repeatability file is appreciated mainly when are predicted new samples that are not in the calibration set and whose spectrum were recorded a long time after the equation development. In this case, bias values corresponding to fatty acids predictions were lower when the repeatability file was used: miristic (bias$\sub$without/=-0.05 and bias$\sub$with/=-0.04), Palmitic (bias$\sub$without/=-0.42 and bias$\sub$with/=-0.11), Palmitoleic (bias$\sub$without/=-0.03 and bias$\sub$with/=0.03), Stearic (bias$\sub$without/=0.47 and bias$\sub$with/=0.28), oleic (bias$\sub$without/=0.14 and bias$\sub$with/=-0.04) and linoleic (bias$\sub$without/=0.25 and bias$\sub$with/=-0.20).

  • PDF

Development of Prediction Model for Capsaicinoids Content in Red-Pepper Powder Using Near-Infrared Spectroscopy - Particle Size Effect (근적외선 스펙트럼을 이용한 고춧가루의 캡사이신 함량 예측 모델 개발 - 입자의 영향)

  • Mo, Changyeun;Kang, Sukwon;Lee, Kangjin;Lim, Jong-Guk;Cho, Byoung-Kwan;Lee, Hyun-Dong
    • Food Engineering Progress
    • /
    • v.15 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • In this research, the near-infrared absorption from 1,100-2,300 nm was used to measure the content of capsaicinoids in the red-pepper powder by using the Acousto-optic tunable filters (AOTF) spectrometer with sample plate and sample rotating unit. Non-spicy red-pepper samples from one location (Younggwang-gun. Korea) were mixed with spicy one (var. Chungyang) to make samples separated by particle size (below 0.425 mm, 0.425-0.71 mm, and 0.71- 1.4 mm). The Partial Least Squares Regression (PLSR) model to predict the capsaicinoid content on particle sizes was developed with measured spectra by AOTF spectrometer and used to analyze the amount of capsaicinoids by HPLC. The PLSR Model of red-pepper powder of below 0.425 mm, 0.425-0.71 mm, and 0.71-1.4 mm with cross validation had ${R_V}^2$ = 0.948-0.979 and Standard Error of Prediction (SEP) = 6.56-7.94 mg%. The prediction error of smaller particle size of red-pepper powder was low. The best PLSR model was found in pretreatment of Range Normalization, Standard Normal Variate, and 1st Derivatives of red-pepper powder of below 1.4 mm with cross validation, having ${R_V}^2$ = 0.959 and SEP = 8.82 mg%.