Browse > Article
http://dx.doi.org/10.7732/kjpr.2019.32.2.124

Construction of Database System on Amylose and Protein Contents Distribution in Rice Germplasm Based on NIRS Data  

Oh, Sejong (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Choi, Yu Mi (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Lee, Myung Chul (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Lee, Sukyeung (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Yoon, Hyemyeong (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Rauf, Muhammad (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Chae, Byungsoo (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Publication Information
Korean Journal of Plant Resources / v.32, no.2, 2019 , pp. 124-143 More about this Journal
Abstract
This study was carried out to build a database system for amylose and protein contents of rice germplasm based on NIRS (Near-Infrared Reflectance Spectroscopy) analysis data. The average waxy type amylose contents was 8.7% in landrace, variety and weed type, whereas 10.3% in breeding line. In common rice, the average amylose contents was 22.3% for landrace, 22.7% for variety, 23.6% for weed type and 24.2% for breeding line. Waxy type resources comprised of 5% of the total germplasm collections, whereas low, intermediate and high amylose content resources share 5.5%, 20.5% and 69.0% of total germplasm collections, respectively. The average percent of protein contents was 8.2 for landrace, 8.0 for variety, and 7.9 for weed type and breeding line. The average Variability Index Value was 0.62 in waxy rice, 0.80 in common rice, and 0.51 in protein contents. The accession ratio in arbitrary ranges of landrace was 0.45 in amylose contents ranging from 6.4 to 8.7%, and 0.26 in protein ranging from 7.3 to 8.2%. In the variety, it was 0.32 in amylose ranging from 20.1 to 22.7%, and 0.51 in protein ranging from 6.1 to 8.3%. And also, weed type was 0.67 in amylose ranging from 6.6 to 9.7%, and 0.33 in protein ranging from 7.0 to 7.9%, whereas, in breeding line it was 0.47 in amylose ranging from 10.0 to 12.0%, and 0.26 in protein ranging from 7.0 to 7.9%. These results could be helpful to build database programming system for germplasm management.
Keywords
Amylose; Database; NIRS (Near-Infrared Reflectance Spectroscopy); Protein; Rice germplasm;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Kwon, Y.R., M.H. Baek, D.C. Choi, J.S. Choi and Y.G. Choi. 2005. Determination of calibration curve for total nitrogen contents analysis in fresh rice leaves using visible and nearinfrared spectroscopy. Korean J. Crop Sci. 50(6):394-399 (in Korean).
2 Kwon, Y.R., S.H. Cho, Y.E. Song, J.H. Lee and C.H. Cho. 2006. Nondestructive measurement of chemical compositions in polished rice and brown rice using NIR spectra of hulled rice acquired in transmittance and reflectance modes. Korean J. Crop Sci. 51(5):451-457 (in Korean).
3 Lee, I., J.C. Joo, C.S. Lee, G.Y. Kim, D.Y. Woo and J.H. Kim. 2017. Evaluation of the water quality changes in agricultural reservoir covered with floating photovoltaic solar-tracking system. J. Korean Soc. Environ. Eng. 39(5):255-264 (in Korean).   DOI
4 Lee, J.I., K. Kim, J.C. Shin, E.H. Kim, M.H. Lee and Y.J. Oh. 1996. Effects of ripening temperature on quality appearance and chemical quality characteristics of rice grain. J. Agri. Sci. 38(1):1-9 (in Korean).   DOI
5 Lee, K.Y., U. Sim, Y.M. Choi and J.S. Lee. 2018. Nutritional compositions and antioxidant activities of frequently consumed mushrooms in Korea. J. Korean Soc. Food Sci. Nutr. 47(11):1178-1184 (in Korean).   DOI
6 Moon, S.S., K.H. Lee and R.K. Cho. 1994. Application of near infrared reflectance spectroscopy in quality evaluation of domestic rice. Korean J. Food Sci. Technol. 26(6):718-725 (in Korean).
7 Nam, J.I., G.E. Choi, Y.M. Kim and J.I. Park. 2015. Analysis of morphological characteristics and variation among six populations of Pourthiaea villosa (Thunb.) Decne. var. villosa in Korea. Korean J. Plant Res. 28(1):26-34 (in Korean).   DOI
8 Oh, H.S., Y.H. Park and J.H. Kim. 2002. Isoflavone contents, antioxidative and fibrinolytic activities of some commercial cooking-with-rice soybeans. Korean J. Food Sci. Technol. 34(3):498-504 (in Korean).
9 Oh, S.J., B.S. Chae, M.C. Lee, Y.M. Choi, S.K. Lee, H.C. Ko, M. Rauf and D.Y. Hyun. 2018. Statistical treatment on amylose and protein contents in rice variety germplasm based on the data obtained from analysis of near-infrared reflectance spectroscopy (NIRS). Korean J. Plant Res. 31(5): 498-514 (in Korean).   DOI
10 Oh, S.J., M.C. Lee, Y.M. Choi, S.K. Lee, M.W. Oh, A. Ali, B.S. Chae and D.Y. Hyun. 2017a. Development of near-infrared reflectance spectroscopy (NIRS) model for amylose and crude protein contents analysis in rice germplasm. Korean J. Plant Res. 30(1):38-49 (in Korean).   DOI
11 Oh, S.J., M.C. Lee, Y.M. Choi, S.K. Lee, M.W. Oh, A. Ali, B.S. Chae and D.Y. Hyun. 2017b. Fast systemic evaluation of amylose and protein contents in collected rice landrace germplasm using near-infrared reflectance (NIRS). Korean J. Plant Res. 30(4):450-465 (in Korean).   DOI
12 Oh, S.W., S.M. Lee, S.Y. Park, S.Y. Lee, W.H. Lee, H.S. Cho and Y.S. Yeo. 2016. Rice biotechnology and current development. J. Korean Soc. Int. Agric. 28(1):24-36 (in Korean).   DOI
13 Peng, S., Q. Tang and Y. Zou. 2009. Current status and challenges of rice production in China. Plant Prod. Sci. 12(1):3-8.   DOI
14 Ramirez, J.A., J.M. Poada, I.T. Handa, G. Hoch, M. Vohland, C. Messier and B. Reu. 2015. Near-infrared spectroscopy (NIRS) predicts non-structural carbohydrate concentrations in different tissue types of a broad range of tree species. Methods in Ecology and Evolution 6:1018-1025.   DOI
15 Shu, Q.Y., D.X. Wu, Y.W. Xia, M.W. Gao and A. McClung. 1999. Calibration optimization for rice apparent amylose content by near-infrared reflectance spectroscopy (NIRS). J. of Zhejiang University (Agriculture & Life Science) 25: 343-346.
16 Song, Y.E., D.R. Lee, S.H. Cho, K.K. Lee, J.S. Jeong and K.C. Cho. 2013. NIRS calibration equation development and validation for total nitrogen contents field analysis in fresh rice leaves. Korean J. Crop. Sci. 58(3):301-307 (in Korean).   DOI
17 Song, Y.J., Y.E. Song, N.K. Oh, Y.G. Choi and K.C. Cho. 2006. Relationship between near-infrared reflectance spectra and mechanical sensory score of commercial brand rice produced in Jeonbuk. Korean J. of Crop Sci. 51(s):42-46 (in Korean).
18 Yoon, M.O., H.S. Lee, K.R. Kim, J.E. Shim and J.Y. Hwang. 2017. Development of processed food database using Korea national health and nutrition examination survey data. Journal of Nutrition and Health 50(5):504-518 (in Korean).   DOI
19 Williams, P. and K. Norris. 1987. Near-Infrared Technology in Agricultural and Food Industries. American Association of Cereal Chemists, Inc., MN (USA). p. 330.
20 Wu, J.G. and C.H. Shi. 2007. Calibration model optimization for rice cooking characteristics by near infrared reflectance spectroscopy (NIRS). Food Chemistry 103:1054-1061.   DOI
21 Zhu, X., G. Li and Y. Shan. 2015. Prediction of cadmium content in brown rice using near-infrared spectroscopy and regression modelling techniques. International Journal of Food Science and Technology 50:1123-1129.   DOI
22 Han, C.S., K.S. Yon and J.R. Warashina. 1998. Development of a constituent prediction model of domestic rice using nearinfrared reflectance analyzer(II)-Prediction of brown and milled rice protein content and brown rice yield from undried paddy. J. Korean Soc. Agri. Machinary 23:253-258 (in Korean).
23 Bagchi, T.B., S. Sharma and K. Chattopadhyay. 2016. Development of NIRS models to predict protein and amylose content of brown rice and proximate compositions of rice bran. Food Chemistry 191:21-27.   DOI
24 Cho, K.C., H.S. Park, S.H. Lee, J.H. Choi, S. Seo and G.J. Choi. 2012. Transfer and validation of NIRS calibration models for evaluating forage quality in Italian ryegrass silages. J. Lives Hous. & Env. 18(suppl.):81-90 (in Korean).
25 Chun, J.U. 2010. Rapid measure of color and catechins contents in processed tea using NIRS. Korean J. Plant Res. 23(4): 386-392 (in Korean).
26 Clarke, M.A., E.R. Arias and C. McDonald-Lewis. 1992. Near Infrared Analysis in The Sugarcane Factory, Ruspam Commun. Inc., Sugary Azucar Press, LA (USA). pp. 244-264.
27 Delwiche, S.R., K.S. McKenzie and B.D. Webb. 1996. Quality characteristics in rice by near-infrared relfecance analysis of whole grain muilled samples. J. of Cereal Chemistry 73: 257-263.
28 Hwang, H.G., R.K. Cho, J.K. Sohn and S.K. Lee. 1994. Rapid evaluation of chemical components of rice grain using near infrared spectroscopy. Korean J. Crop Sci. 39(1):7-14 (in Korean).
29 Jeong, J.M., J.U. Jeung, S.B. Lee, M.K. Kim, B.K. Kim and J.K. Sohn. 2013. Physicochemical properties of rice endosperm with different amylose contents. Korean J. Crop Sci. 58(3): 274-282 (in Korean).   DOI
30 Jiang, H.Y., Y.J. Zhu, L.M. Wee, J.R. Dai, T.M. Song, Y.L. Yan and S.J. Chen. 2007. Analysis of protein, starch and oil content of single intact kernels by near infrared reflectance spectroscopy (NIRS) in maize. Plant Breeding 126:492-497.   DOI
31 Kawamura, S., M. Natsuga, K. Takekura and K. Itoh. 2003. Development of an automatic rice-quality inspection system. Comput. Elect. Agr. 40:115-126.   DOI
32 Kim, C.E., M.Y. Kang and M.H. Kim. 2012. Comparison of properties affecting the palatability of 33 commercial brands of rice. Korean J. Crop Sci. 57(3):301-309 (in Korean).   DOI
33 Kim, J.S., M.H. Song, J.E. Choi, H.B. Lee and S.N. Ahn. 2008a. Quantification of protein and amylose contents by near-infrared reflectance spectroscopy in aroma rice. Korean J. Food Sci. Technol. 40(6):603-610 (in Korean).
34 Kim, H.I. 2004. Comparison of Korean and Japanese rice by NIR and chemical analysis. J. East Asian Soc. Dietary Life 14(2):135-144 (in Korean).
35 Kim, H.J., and S.H. Kang. 2017. Ethnobotany, phytochemistry, pharmacology of the Korean Campanulaceae: a comprehensive review. Korean J. Plant Res. 30(2):240-264 (in Korean).   DOI
36 Kim, H.J., S.Y. Kim, Y.S. Lee and Y.H. Kim. 2014. Determination of baicalein contents in Scutellaria baicalensis by NIRS. Korean J. Plant Res. 27(4):286-292 (in Korean).   DOI
37 Kim, J.S., Y.H. Cho, J.G. Gwag, K.H. Ma, Y.M. Choi, J.B. Kim, J.H. Lee, T.S. Kim, J.K. Cho and S.Y. Lee. 2008b. Quantitative analysis of amylose and protein content of rice germplasm in RDA-genebank by near-infrared reflectance spectroscopy. Korean J. Crop Sci. 53(2):217-223 (in Korean).
38 Kim, K.H., C.S. Kang, I.D. Choi, H.S. Kim, J.N. Hyun and C.S. Park. 2016. Analysis of grain characteristics in Korean wheat and screening wheat for quality using near infrared reflectance spectroscopy. Korean J. Breed. Sci. 48(4):442-449 (in Korean).   DOI
39 Kim, S.S. and H.C. Cha. 2017. Comparison of the total phenolic and flavonoid contents and antioxidant activities of four kinds of sand dune plants living in Taean, Korea. Korean J. Plant Res. 30(1):8-16 (in Korean).   DOI
40 Abrams, S.M., J.S. Shenk, M.O. Westerhaus and F.E. Barton. 1987. Determination of forage quality by near-infrared reflectance spectroscopy: Efficiency of broad based calibration equations. J. Diary Sci. 70:806-813.   DOI
41 Ahn, H.G. and Y.H. Kim. 2012. Discrimination of Korean domestic and foreign soybeans using near-infrared reflectance spectroscopy. Korean J. Crop Sci. 57(3):296-300 (in Korean).   DOI