• Title/Summary/Keyword: NIR dye

Search Result 24, Processing Time 0.026 seconds

Synthesis and Characterization of Peripherally Ferrocene-modified Zinc Phthalocyanine for Dye-sensitized Solar Cell

  • An, Min-Shi;Kim, Soon-Wha;Hong, Jong-Dal
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3272-3278
    • /
    • 2010
  • Synthesis and structural characterization of peripherally ferrocene-substituted zinc phthalocyanine (ZnPc-Fc) were carried out for efficient far-red/near-IR performance in dye-sensitized nanostructured $TiO_2$ solar cells. Incorporating ferrocene into phthalocyanine strongly improved the dye solubility in polar organic solvents, and reduced surface aggregation due to the steric effect of bulky ferrocene substituents. The involvement of electron transfer reaction pathways between ferrocene and phthalocyanine in ZnPc-Fc was evidenced by completely quenched fluorescence from S1 state (< 0.08% vs ZnPc). Strong absorption bands at 542 and 682 nm were observed in the transient absorption spectroscopy of ZnPc-Fc in DMSO, which was excited at a 670 nm laser pulse with a 15 ps full width at half maximum. Also, the excited state absorption signals at 450 - 600 and 750 - 850 nm appeared from the formation of charge separated state of phthalocyanine's anion. The lifetime of the charge separate state in ZnPc-Fc was determined to be $170{\pm}8$ ps, which was almost 17 times shorter than that of the ZnPc.

Properties of Working Electrodes with Polystyrene Beads Addition in Dye Sensitized Solar Cells

  • Noh, Yunyoung;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.380-383
    • /
    • 2015
  • We prepared the $TiO_2$ layer with 0 ~ 4 wt% of polystyrene (PS) beads having a radius of 250 nm to increase the dye adsorption and energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Then, we fabricated DSSCs using $0.45cm^2$ active area. FE-SEM was used to characterize the microstructure consisting of $TiO_2$ layer and PS beads. UV-VIS-NIR was used to determine the optical absorbance of working electrodes (WEs). Solar simulator and potentiostat were used to determine the photovoltaic properties. We observed that pores having a radius of 250 nm were formed with the density of $0.15ea/{\mu}m^2$ in $TiO_2$ layers after conducting the sintering process. The absorbance in visible light regime was found to increase with the increase in the amount of PS beads. The ECE increased from 4.66% to 5.25% when the amount of PS beads was increased from 0 to 4 wt%. This is because the pores of PS beads increased the adsorption of dye. Our results indicate that the ECE of the DSSCs can be enhanced by the addition of an appropriate amount of PS beads into $TiO_2$ layers.

Properties of Working Electrodes with IGZO layers in a Dye Sensitized Solar Cell

  • Kim, Gunju;Noh, Yunyoung;Choi, Minkyoung;Kim, Kwangbae;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.110-115
    • /
    • 2016
  • We prepared a working electrode (WE) coated with 0 ~ 50 nm-thick indium gallium zinc oxide(IGZO) by using RF sputtering to improve the energy conversion efficiency (ECE) of a dye sensitized solar cell (DSSC). Transmission electron microscope (TEM) and energy dispersive spectroscopy (EDS) were used to analyze the microstructure and composition of the IGZO layer. UV-VIS-NIR spectroscopy was used to determine the transparency of the WE with IGZO layers. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with IGZO layer. From the results of the microstructural analysis, we were able to confirm the successful deposition of an amorphous IGZO layer with the expected thickness and composition. From the UV-VIS-NIR analysis, we were able to verify that the transparency decreased when the thickness of IGZO increased, while the transparency was over 90% for all thicknesses. The photovoltaic results show that the ECE became 4.30% with the IGZO layer compared to 3.93% without the IGZO layer. As the results show that electron mobility increased when an IGZO layer was coated on the $TiO_2$ layer, it is confirmed that the ECE of a DSSC can be enhanced by employing an appropriate thickness of IGZO on the $TiO_2$ layer.

Synthesis of Bis(dithiobenzil) Metal Complex and Its Photostability (Bis(dithiobenzil) 금속 화합물의 합성 및 광안정성)

  • Lee, Gun-Dae;Park, Na Yi;Jeon, Seung Yup;Heo, Jin;Son, Dae Hee;Hwang, Tae Kyung;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.433-437
    • /
    • 2007
  • Bis(dithiobenzil) metal complex, used as functional NIR absorbing dye and photostabilizer, was synthesized using bezoin and anisoin as intermediate compounds. And squarylium, a charge generation material, was synthesized to find its photostability effect. The structure of the product was determined by $^1H-NMR$ and FT-IR and the thermal property was analyzed by DSC and TGA. Optical property and photostability were determined by UV-Vis-NIR spectroscopy. High absorbance was obtained in the NIR range and maximum absorbing wavelength was shifted depending on the nature and position of substituent in the bis(dithiobenzil) metal complex. The photofading effect of squarylium decreased by the addition of bis(dithiobenzil) metal complex.

Properties of Blocking Layer with Ag Nano Powder in a Dye Sensitized Solar Cell

  • Noh, Yunyoung;Kim, Kwangbae;Choi, Minkyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.1
    • /
    • pp.105-109
    • /
    • 2016
  • We prepared a working electrode (WE) with a blocking layer (BL) containing 0 ~ 0.5 wt% Ag nano powders to improve the energy conversion efficiency (ECE) of dye sensitized solar cell (DSSC). FESEM and micro-Raman were used to characterize the microstructure and phase. UV-VIS-NIR spectroscopy was employed to determine the adsorption of the WE with Ag nano powders. A solar simulator and a potentiostat were used to confirm the photovoltaic properties of the DSSC with Ag nano powders. From the results of the microstructural analysis, we confirmed that Ag nano powders with particle size of less than 150 nm were dispersed uniformly on the BL. Based on the phase and adsorption analysis, we identified the existence of Ag and found that the adsorption increased when the amount of Ag increased. The photovoltaic results show that the ECE became 4.80% with 0.3 wt%-Ag addition compared to 4.31% without Ag addition. This improvement was due to the increase of the localized surface plasmon resonance (LSPR) of the BL resulting from the addition of Ag. Our results imply that we might be able to improve the efficiency of a DSSC by proper addition of Ag nano powder to the BL.

Properties of Working Electrodes with Diamond Blends in Dye Sensitized Solar Cells

  • Choi, Minkyoung;Noh, Yunyoung;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.5
    • /
    • pp.384-388
    • /
    • 2015
  • We prepared blocking layers by adding 0.0 ~ 0.6 wt% nano diamond blends (DBs) to $TiO_2$ blocking layers to improve the energy conversion efficiencies (ECEs) of dye sensitized solar cells (DSSCs). TEM and micro-Raman spectroscopy were used to characterize the microstructure and phases of DBs, respectively. Optical microscopy and FE-SEM were used to analyze the microstructure of the $TiO_2$ blocking layer with DBs. UV-VIS-NIR spectroscopy was used to determine the absorbance of the working electrodes. A solar simulator and a potentiostat were used to determine the photovoltaic properties and the impedance of the DSSCs with DBs. From the results of the DBs analysis, we determined a 6.97 nm combination of nano diamonds and graphite. We confirmed that ECE increased from 5.64 to 6.48 % when the added DBs increased from 0.0 to 0.2 wt%. This indicates that the effective surface area and electron mobility increased when DBs were added to the $TiO_2$ blocking layer. Our results indicate that the ECE of DSSCs can be enhanced by adding an appropriate amount of DBs to the $TiO_2$ blocking layers.

Time-encoded Near-infrared (NIR) Spectroscopic Comparison of Absorbance Measurement Using an Acousto-optic NIR Swept Laser Source (음향광학 파장선택 필터 기반 파장훑음 레이저를 이용한 시간-인코딩 된 근적외선 흡광도 측정 비교 연구)

  • Jang, Hansol;Kim, Gyeong Hun;Han, Ga-Hee;Cho, Jaedu;Kim, Chang-Seok
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.1
    • /
    • pp.22-27
    • /
    • 2017
  • Time-encoded near-infrared spectroscopy (NIRS) system is proposed, based on a near-infrared (NIR) swept laser source, for comparison to the conventional NIRS method using a detector-type spectrometer. The cavity of the NIR swept laser source consists of a semiconductor optical amplifier (SOA) with a gain region around 800 nm, and several fiber-optic components. To change the output wavelength in time using an applied electric radio-frequency signal, an acousto-optic tunable filter (AOTF) is introduced in the fiber ring cavity configuration. To demonstrate the feasibility of an NIR swept laser source for NIRS imaging, the spectroscopic comparison of two kinds of absorbance-measuring systems a detector-type spectrometer using a white light source, and a source-type spectrometer using an NIR swept laser is successfully performed with an NIR-absorbing dye.

Evaluation of Near-infrared Fluorescence-conjugated Peptides for Visualization of Human Epidermal Receptor 2-overexpressed Gastric Cancer

  • Jeong, Kyoungyun;Kong, Seong-Ho;Bae, Seong-Woo;Park, Cho Rong;Berlth, Felix;Shin, Jae Hwan;Lee, Yun-Sang;Youn, Hyewon;Koo, Eunhee;Suh, Yun-Suhk;Park, Do Joong;Lee, Hyuk-Joon;Yang, Han-Kwang
    • Journal of Gastric Cancer
    • /
    • v.21 no.2
    • /
    • pp.191-202
    • /
    • 2021
  • Purpose: A near-infrared (NIR) fluorescence imaging is a promising tool for cancer-specific image guided surgery. Human epidermal receptor 2 (HER2) is one of the candidate markers for gastric cancer. In this study, we aimed to synthesize HER2-specific NIR fluorescence probes and evaluate their applicability in cancer-specific image-guided surgeries using an animal model. Materials and Methods: An NIR dye emitting light at 800 nm (IRDye800CW; Li-COR) was conjugated to trastuzumab and an HER2-specific affibody using a click mechanism. HER2 affinity was assessed using surface plasmon resonance. Gastric cancer cell lines (NCI-N87 and SNU-601) were subcutaneously implanted into female BALB/c nu (6-8 weeks old) mice. After intravenous injection of the probes, biodistribution and fluorescence signal intensity were measured using Lumina II (Perkin Elmer) and a laparoscopic NIR camera (InTheSmart). Results: Trastuzumab-IRDye800CW exhibited high affinity for HER2 (KD=2.093(3) pM). Fluorescence signals in the liver and spleen were the highest at 24 hours post injection, while the signal in HER2-positive tumor cells increased until 72 hours, as assessed using the Lumina II system. The signal corresponding to the tumor was visually identified and clearly differentiated from the liver after 72 hours using a laparoscopic NIR camera. Affibody-IRDye800CW also exhibited high affinity for HER2 (KD=4.71 nM); however, the signal was not identified in the tumor, probably owing to rapid renal clearance. Conclusions: Trastuzumab-IRDye800CW may be used as a potential NIR probe that can be injected 2-3 days before surgery to obtain high HER2-specific signal and contrast. Affibody-based NIR probes may require modifications to enhance mobilization to the tumor site.

Property of the Nano-Thick TiO2 Films Using an ALD at Low Temperature (저온 ALD로 제조된 TiO2 나노 박막 물성 연구)

  • Yoon, Ki-Jeong;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.18 no.10
    • /
    • pp.515-520
    • /
    • 2008
  • We fabricated 10 nm-$TiO_2$ thin films for DSSC (dye sensitized solar cell) electrode application using ALD (atomic layer deposition) method at the low temperatures of $150^{\circ}\;and\;250^{\circ}$. We characterized the crosssectional microstructure, phase, chemical binding energy, and absorption of the $TiO_2$ using TEM, HRXRD, XPS, and UV-VIS-NIR, respectively. TEM analysis showed a 10 nm-thick flat and uniform $TiO_2$ thin film regardless of the deposition temperatures. Through XPS analysis, it was found that the stoichiometric $TiO_2$ phase was formed and confirmed by measuring main characteristic peaks of Ti $2p^1$, Ti $2p^3$, and O 1s indicating the binding energy status. Through UV-VIS-NIR analysis, ALD-$TiO_2$ thin films were found to have a band gap of 3.4 eV resulting in the absorption edges at 360 nm, while the conventional $TiO_2$ films had a band gap of 3.0 eV (rutile)${\sim}$3.2 eV (anatase) with the absorption edges at 380 nm and 410 nm. Our results implied that the newly proposed nano-thick $TiO_2$ film using an ALD process at $150^{\circ}$ had almost the same properties as thsose of film at $250^{\circ}$. Therefore, we confirmed that the ALD-processed $TiO_2$ thin film with nano-thickness formed at low temperatures might be suitable for the electrode process of flexible devices.

Properties of Dye Sensitized Solar Cells with Porous TiO2 Layers Using Polymethyl-Methacrylate Nano Beads

  • Choi, Minkyoung;Noh, Yunyoung;Kim, Kwangbae;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.194-199
    • /
    • 2016
  • We prepared polymethyl methacrylate (PMMA) beads with a particle size of 80 nm to improve the energy conversion efficiency (ECE) by increasing the effective surface area and the dye absorption ability of the working electrodes (WEs) in a dye sensitized solar cell (DSSC). We prepared the $TiO_2$ layer with PMMA beads of 0.0~1.0 wt%; then, finally, a DSSC with $0.45cm^2$ active area was obtained. Optical microscopy, transmission electron microscopy, field emission scanning electron microscopy, and atomic force microscopy were used to characterize the microstructure of the $TiO_2$ layer with PMMA. UV-VIS-NIR was used to determine the optical absorbance of the WEs with PMMA. A solar simulator and a potentiostat were used to determine the photovoltaic properties of the PMMA-added DSSC. Analysis of the microstructure showed that pores of 200 nm were formed by the decomposition of PMMA. Also, root mean square values linearly increased as more PMMA was added. The absorbance in the visible light regime was found to increase as the degree of PMMA dispersion increased. The ECE increased from 4.91% to 5.35% when the amount of PMMA beads added was increased from 0.0 to 0.4 wt%. However, the ECE decreased when more than 0.6 wt% of PMMA was added. Thus, adding a proper amount of PMMA to the $TiO_2$ layer was determined to be an effective method for improving the ECE of a DSSC.