• Title/Summary/Keyword: NIJ-STD-0101.06

Search Result 3, Processing Time 0.015 seconds

Ballisitic Limit Velocity Comparison for Warship Materials against AK-47 7.62mm MSC (적성소화기 위협에 대한 함정용 선체재질별 방호한계속도 비교 연구)

  • Kim, Jong-Hwan;Shin, Yun-ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.54 no.4
    • /
    • pp.286-293
    • /
    • 2017
  • This paper presents ballistic limit velocity results of a variety of materials generally used in warships. Ballistic limit velocity is the velocity required for a projectile to penetrate a target with 50 percents of time and is widely used as a measure of armour bulletproofing. For this study, live fire experiments were implemented using AK-47 $7.62{\times}9mm$ mild steel core as a projectile as well as various thickness warship materials as a target. Also, methods of MIL-STD-662F, NIJ-STD-0101.06 and support vector machine were applied to measure the ballistic limit velocity and then their results were graphically analyzed for comparison. The minimum of their results was considered as the ballistic limit velocity in a conservative way.

A Study on the Evaluation for Performance of Body Armor Vest using ANOVA (분산분석을 이용한 방탄조끼의 방탄성능 평가에 관한 연구)

  • Park, Jae Woo;Byun, Kisik;Cho, Sung-Yong;Kim, Suk Ki;Yeo, Yongheon;Kwon, Jae Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.372-378
    • /
    • 2021
  • A body armor vest is a form of munition related directly to the safety and life of combatants. Therefore, it must meet the requirements for ballistic resistance. The ROK demands the performance of body armor vest meet the Level IIIA specified by the NIJ STD-0101.06 published by the US National Institute of Justice. This study performed acceptance tests on body armor vests. The factors for evaluating the ballistic resistance evaluated were not only whether it penetrates when shooting but also whether the BFS (Backface Signature) depth does not exceed 44 mm when it does not penetrate. The factors were assessed to determine if they were consistent or not. The BFS depth is affected by various test factors, such as the physical properties of the backing material and the changes in the amount of impact with the bullet velocity. In this study, an analysis of the bulletproof performance was performed by extracting the data with the same conditions using ANOVA to remove the influence of these external factors. The analysis revealed a correlation between the BFS depth, bullet velocity, vest conditions, and protection area. The mass production process was analyzed by estimating the Interval of BFS on each lot. Through this, a new methodology for ballistic resistance evaluation and paradigm for future quality assurance is suggested.

Support Vector Machine based Ballistic Limit Velocity Measurement for Small Caliber Projectile (SVM 기반 소화기 방호한계속도 측정방법 연구)

  • Kim, Jong-Hwan;Baik, Seungwon;Yoon, Byengjo;Jo, Sungsik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.629-637
    • /
    • 2016
  • This paper presents a ballistic limit velocity measurement using the support vector machine that classifies two classes, the partial penetration and the complete penetration, by generating a linear separating hyperplane that equally divides the classes. For the ballistic limit velocity measurement, the previous methods(MIL-STD-662F and NIJ-STD-0101.06) have required a large number of experiments that caused high cost and time. However, the proposed method is not only flexible, requiring 0.85 ~ 4.8 times fewer experiments but also reliable, providing less than 2 % difference in results compared to the previous methods. For its validation, live fire experiments were conducted using various thickness SS400 iron plates as a target and two different types of live bullets such as 5.56 mm M193 and 7.62 mm M80.