• Title/Summary/Keyword: NIH3T3

Search Result 308, Processing Time 0.023 seconds

Identification of Soil Actinomycetes Producing Anticancer Agent and Its Biological Activities (항암활성물질을 생산하는 토양방선균의 동정 및 함암물질의 생물학적 활성)

  • 박정민;문순옥;오두환
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.4
    • /
    • pp.347-352
    • /
    • 1994
  • Cytotoxic test was performed by SRB assay on human epidermoid carcinoma HEp-2 cell line for screening the soil microorganism, secreting anticancer agent. One microorganism was selected among two thousand microorganisms for its highest cytotoxicity. And this microorganism was identified with Streptomyces species after performing of diaminopimeric acid and reducing sugar analysis of cell wall and analysing the cultural characteristics and named Streptomyces sp. SM 1119. The effect of anticancer agent in SM 1119 culture extract on the cell cycle was studied by using GG$_{o}$ synchronized NIH 3T3 cells. The extract inhibited the serum stimulation of GG$_{o}$ NIH 3T3 cell only within 1 hour after serum stimulation but not after 6 hours. The extract also reduced the amount of c-myc mRNA in Colo 320 cell. These results suggest that the anticancer agent in the extract inhibits the progression of cell cycle very early stages, probably from G$_{0}$ to G$_{1}$.

  • PDF

Overexpression of tumor necrosis factor receptor-associated protein 1 (TRAP1), leads to mitochondrial aberrations in mouse fibroblast NIH/3T3 cells

  • Im, Chang-Nim;Seo, Jeong-Sun
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.280-285
    • /
    • 2014
  • Cancer cells undergo uncontrolled proliferation, and aberrant mitochondrial alterations. Tumor necrosis factor receptor-associated protein 1 (TRAP1) is a mitochondrial heat shock protein. TRAP1 mRNA is highly expressed in some cancer cell lines and tumor tissues. However, the effects of its overexpression on mitochondria are unclear. In this study, we assessed mitochondrial changes accompanying TRAP1 overexpression, in a mouse cell line, NIH/3T3. We found that overexpression of TRAP1 leads to a series of mitochondrial aberrations, including increase in basal ROS levels, and decrease in mitochondrial biogenesis, together with a decrease in peroxisome proliferator-activated receptor gamma coactivator-$1{\alpha}$ (PGC-$1{\alpha}$) mRNA levels. We also observed increased extracellular signal-regulated kinase (ERK) phosphorylation, and enhanced proliferation of TRAP1 overexpressing cells. This study suggests that overexpression of TRAP1 might be a critical link between mitochondrial disturbances and carcinogenesis.

Safety study on Genetic Toxicity of Cervi Pantotrichum Cornu Herbal acupuncture Solution(CPCHA) (유전독성시험에 의한 녹용약침의 안전성 연구)

  • Seo, Bu-Il;Byun, Boo-Hyeong
    • The Korea Journal of Herbology
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2005
  • Objectives : The purpose of this study is to investigate genetic toxicity of Cervi pantotrichum Cornu herbal acupuncture solution(CPCHA). Methods : In this study, a series of investigation have been carried out to analyze the effects of Cervi pantotrichum Cornu herball acupuncture solution(CPCHA) on colony forming ability of NIH3T3cells, Hela cells and adrenorectal coloncell for genetic toxicity test. Results and Conclusions : From the above results, it is suggested that Cervi pantotrichum Cornu herball acupuncture solution(CPCHA) was limited 0.5-10ug/ml by test. Cervi pantotrichum Cornu herball acupuncture solution(CPCHA) did not exert the protective role to the genetic toxicity in kinds of cell lines used in this study. From these results, Cervi pantotrichum Cornu herbal aqua-acupuncture solution needs further study to prove it's function in cell culture system.

  • PDF

A STUDY ON THE INHIBITORY EFFECT OF ARECA CATECHU L. ON THE ACID PRODUCTION OF STREPTOCOCCUS MUTANS JC-2 AND ITS CYTOTXICITY (빈랑의 Streptococcus mutans JC-2의 산생성 억제효과와 세포독성에 대한 연구)

  • Lee, Gwang-Hee;Nam, Yong-Ok
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.801-808
    • /
    • 1997
  • In order to develop natural anticariogenic agents, we investigated inhibitory effects of Areca catechu L. extracts on the acid production of Streptococcus mutans JC-2 and its cytotoxicity on NIH 3T3 fibroblasts were also examined. The results are as follows : 1. Major organic acid produced by Streptococcus mutans JC-2 were lactic acid and acetic acid, and their productions were decreased by additions of Areca catechu L. extracts. 2. Areca catechu L. extracts were showed noncytotoxicity on NIH 3T3 fibroblasts.

  • PDF

The Influence of Circadian Gene Per2 on Cell Damaged by Ultraviolet C

  • Liu, Yanyou;Wang, Yuhui;Jiang, Zhou;Xiao, Jing;Wang, Zhengrong
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.308-314
    • /
    • 2011
  • It has been shown that circadian genes not only play an important role on circadian rhythms, but also participate in other physiological and pathological activities, such as drug dependence, cancer development and radiation injury. The Per2, an indispensable component of the circadian clock, not only modulates circadian oscillations, but also regulates organic function. In the present study, we applied mPER2-upregulated NIH3T3 cells to reveal the relationship of mPer2 and the cells damaged by ultraviolet C (UVC). NIH3T3 cells at the peak of the expression of mPer2 induced by phorbol 12-myristate 13-acetate (PMA) demonstrated little damage by UVC evaluated by MTT assay, cell growth curves and cell colony-forming assay, compared with that at the nadir of the expression of mPer2. Overexpression of mPER2, accompanied p53 upregulated, also demonstrated protective effect on NIH3T3 cells damaged by UVC. These results suggest that mPer2 plays a protective effect on cells damaged by UVC, whose mechanism may be involved in upregulated p53.

Protective Effect of Green Tea Extract and EGCG on Ethanol-induced Cytotoxicity and DNA Damage in NIH/3T3 and HepG2 Cells

  • Kim, Nam Yee;Kim, Hyun Pyo;Heo, Moon Young
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • In the present study, our aim was to determine whether green tea extract (GTE) and its major constituent, epigallocatechin-3-gallate (EGCG) have a protective effect on ethanol-induced cytotoxicity and DNA damage in NIH/3T3 and HepG2 cells. The cell viability and DNA single strand breaks were examined by MTT assay and alkaline single cell gel electrophoresis (Comet assay), respectively. Ethanol decreased the cell viability and also increased DNA single strand breaks in a concentration-dependent manner. On the other hand, GTE showed the protective effect of cytotoxicity and DNA damage induced by ethanol in both cell lines. GTE and EGCG, were found to possess the anti-oxidative and anti-genotoxic activities by evaluation with DPPH test, LDL oxidation assay, oxidative DNA damage assay and 8OH-2'dG generation test. These results were also verified by the experimental results demonstrating the lower cytotoxicity and genotoxicity of commercial green tea liqueur compared to pure ethanol in same concentration. Thus it is concluded that the supplementation of GTE or EGCG may mitigate the ethanol-induced cytotoxicity and DNA damage.

Antioxidant and Cytotoxic Effects of Coenzyme Q10 Derivatives (Coenzyme Q10 유도체들의 항산화 및 세포독성 효과)

  • Choi, Won-Sik;Nam, Seok-Woo;Ahn, Eun-Kyung;Eo, Jin-Yong;Lim, Sang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1787-1794
    • /
    • 2008
  • Coenzyme $Q_{10}$ and six derivatives of coenzyme $Q_n$ were synthesized and tested for their antioxidative effects occurred in proximal tubular epithelial cell (LLC-PK1 cell) and cytotoxicities using in NIH/3T3 cell. As the result, synthetic coenzyme $Q_n$ derivatives showed a potent antioxidative effect compared to coenzyme $Q_{10}$. Among these synthetic compounds, coenzyme $Q_3$-C at ranged 0.04 to 0.4 mmol showed the $107.7{\sim}135.9%$ of cell viability in LLC-PK1 cell. In the test of NIH/3T3, all synthesized coenzyme $Q_n$ derivatives showed the similar effect compared with coenzyme $Q_{10}$. A correlation between isoprene unit number of coenzyme $Q_n$ derivatives and its biological effects, we suggest reduction of isoprene unit number of $Q_n$ derivatives may be related to the increase of antioxidants effects and the reduction of cytotoxicities.

A Study on the Cytotoxic Effects of Several Plant Extracts on the Cell viability and Cell Adhesion Activity in Cultured NIH3T3 Fibroblast (몇 가지 식물추출물이 배양 NIH3T3 섬유모세포의 세포생존율과 세포부착률에 미치는 세포독성에 관한 연구)

  • Rim, Yo-Sup;Song, Won-Seob;Seo, Young-Mi;Park, Seung-Taeck;Kim, Shin-Moo
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.42 no.3
    • /
    • pp.116-124
    • /
    • 2010
  • This study was aimed to clerify the cytotoxicity of some plant extracts such as Hosta longissima HONDA (HL), Hemerocallis fulva var. Kwanso REGL (HFVK), Hemerocallis fulva L (HF), Macrocapium officinale NAKAI (MO) and Mentha canadensis var. piperascens HARA (MCVP), the cultured NIH3T3 fibroblasts were treated with 25, 50, 100, 150 and $200{\mu}g/mL$ of five kinds of plant extracts for 48 hours, respectively. The cytotoxicity of plant extracts was measured by MTT and NR assays for the cell viability, and XTT assay for the cell adhesion activity. In this study, HL, MO and FHVK extracts showed the range of midtoxic-non toxic by the criteria of chemical cytotoxicity. While, the HF and MCVP extracts showed midtoxic. In the extract cytotoxicity, HL, MO and FHVK extracts showed non-toxic by the criteria of extract cytotoxicity. While, HF extract was determined as lower-toxic. In the responsive sensitivity of each plant extract on colorimetric assays, HF extract was sensitive to mitochondrial enzyme by MTT assay, lysosomal enzyme by NR assay and mitochondrial nucleus by XTT assay. While, MCVP extract was sensitive to mitochondrial enzyme by MTT assay and lysosomal enzyme by NR assay than other assays. While, HL, HFVK and MO extracts were most sensitive to NR assay. Cell culture is one of useful materials in the screening of cytotoxic and recovary effect on the putative chemical agents or plant extract. And also, colorimetric assay is regarded as very useful tools for quantitative measurement of cytotoxic effect on plant extracts in vitro.

  • PDF

Panax ginseng total protein promotes proliferation and secretion of collagen in NIH/3T3 cells by activating extracellular signal-related kinase pathway

  • Chen, Xuenan;Wang, Manying;Xu, Xiaohao;Liu, Jianzeng;Mei, Bing;Fu, Pingping;Zhao, Daqing;Sun, Liwei
    • Journal of Ginseng Research
    • /
    • v.41 no.3
    • /
    • pp.411-418
    • /
    • 2017
  • Background: Recently, protein from ginseng was studied and used for the treatment of several kinds of diseases. However, the effect of ginseng total protein (GTP) on proliferation and wound healing in fibroblast cells remains unclear. Methods: In this study, cell viability was analyzed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. Cell cycle distribution was analyzed by flow cytometer. The levels of transforming growth factor ${\beta}1$, vascular endothelial growth factor, and collagens were analyzed by enzyme-linked immunosorbent assay and immunofluorescence staining. The expressions of cyclin A, phosphorylation of extracellular signal-related kinase (p-ERK1/2), and ERK1/2 were analyzed by Western blotting. Results: Our results showed that GTP promoted cell proliferation and increased the percentage of cells in S phase through the upregulation of cyclin A in NIH/3T3 cells. We also found that GTP induced the secretion of type I collagen, and promoted the expression of other factors that regulate the synthesis of collagen such as transforming growth factor ${\beta}1$ and vascular endothelial growth factor. In addition, the phosphorylation of ERK1/2 at Thr202/Tyr204 was also increased by GTP. Conclusion: Our studies suggest that GTP promoted proliferation and secretion of collagen in NIH/3T3 cells by activating the ERK signal pathway, which shed light on a potential function of GTP in promoting wound healing.