• Title/Summary/Keyword: NH3-concentration

Search Result 1,482, Processing Time 0.025 seconds

Kinetic Mechanism in the Absence of Metal of Hafnia alvei Aspartase in the Amination Direction

  • Ra, Im Jeong;Kim, Hyo Jun;Yun, Mun Yeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.3
    • /
    • pp.288-292
    • /
    • 2001
  • The kinetic mechanism of Hafnia alvei aspartase in the amination direction has been determined in the absence of metal. The initial velocity pattern obtained by varying the concentration of fumarate at several fixed concentrations of NH4+ , shows an intersection on the left of the ordinate at pH 7.0, indicating that the kinetic mechanism is a sequential mechanism in which substrate inhibition by fumarate is observed. The dead-end inhibition pattern by varying the concentration of NH4+ at several fixed concentration of succinate shows an intersection on the left of the ordinate. These data are consistent with random addition of NH4+, or fumarate. The Haldane relationship gives a Keq of 1.18 ${\times}$10-3 M at pH 7.0, which is in agreement with the values obtained from the direct determination of reaction concentrations at equilibrium (6.0 $\pm0.2$ ${\times}$10-3 M).

The Effect of Promoters Addition on NOx Removal by $NH_3$ over V$V_2O_5/TiO_2$

  • Lee, Keon-Joo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.29-36
    • /
    • 2002
  • The selective catalytic reduction (SCR) reaction of promoter catalysts was investigated in this study. A pure anatase type of TiO$_2$ was used as support. Activation measurement of prepared catalysts was practiced on a fixed reactor packing by the glass bead after filling up catalysts in 1/4 inch stainless tube. The reaction temperature was measured by K-type thermocouple and catalyst was heated by electric furnace. The standard compositions of the simulated flue gas mixture in this study were as follows: NO 1,780ppm, NH$_3$1,780ppm, $O_2$1% and $N_2$ as balance gas. In this study, gas analyzer was used to measure the outgassing gas. Catalyst bed was handled for 1hr at 45$0^{\circ}C$, and the reactivity of the various catalyst was determined in a wide temperature range. Conversion of NH$_3$/NO ratio and of $O_2$ concentration was practiced at 1,1.5 and 2, respectively. The respective space velocity were as follows . 10,000, 15,000 and 17,000 hr-1. It was found that the maximum conversion temperature range was in a 5$0^{\circ}C$. It was also found toi be very sensitive at space velocity, $O_2$ concentration, and NH$_3$/NO ratio. We also noticed that the maximum conversion temperature of (W, Mo, Sn) -V$_2$O$_{5}$/TiO$_2$ catalysts was broad. Specially WO$_3$-V$_2$O$_{5}$TiO$_2$2 catalyst appeared nearly 100% conversion at not only above 30$0^{\circ}C$ ut also below 25$0^{\circ}C$. At over 30$0^{\circ}C$, NH$_3$ oxidation decreased with decrease of surface excess oxygen. In addition, WO$_3$-V$_2$O$_{5}$TiO$_2$ catalyst did not appear to affect space velocity, $O_2$ concentration, and NH$_3$/NO ratio.ratio.

Studies on the fate of nitrogen in the paddy soil (답토양(沓土壤)에서 질소(窒素)의 동태(動態)에 관(關)한 연구(硏究))

  • Kim, Kwang Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.9 no.1
    • /
    • pp.17-23
    • /
    • 1976
  • In order to investigate the fate of nitrogen in the paddy soil, Suchang, Hwasoon and Susan soil which have different properties, were treated with several nitrogen fertilizers such as ammonium chloride, ammonium sulfate, urea and SCU (sulfur-coated urea), and incubated under water-logged condition in $30^{\circ}C$ incubator. $NH_4-N$, $NO_3-N$, $Fe^{++}$ and pH in soil and stagnant water, were determined at 10, 20, 30, 40 and 50 days after incubation. The obtained results were summarized as follows: 1. The effect of rising temperature was increased in order of Hwasoon>Suchang>Susan and the effect of air drying soil was risen in order of Susan>Hwasoon>Suchang, while the rate of ammonication was in order of Susan>Suchang>Hwasoon. 2. The changes of $NH_4-N$ in stagnant water was dependent upon the nitrogen concentration of $NH_4Cl$ and $(NH_4)SO_4$ plat was high and decreased after 30 days incubation, but increased after 40 days and then decreased again. In contrast with the above, $NH_4-N$ concentration of urea and SCU plot was low but the change showed slightly through the incubation period. 3. Accumulation of $NH_4-N$ in the oxidative layer of the $NH_4Cl$ and $(NH_4)_2SO_4$ plot was higher than that of urea and SCU plot and $NH_4-N$ content was decreased with the incubation period. The change of $NH_4-N$ in the reductive layer showed the same pattern. 4. The changes of $NO_3-N$ in the stagnant water were different according to soil properties and nitrogen fertilizer. $NO_3-N$ concentration in stagnant water of urea and SCU plot was higher than in the $NH_4-Cl$ $(NH_4)_2SO_4$ plot and nearly disappeared after 30 to 40 days incubation. 5. The $NO_3-N$ concentration in the oxidative layer of soil was higher than reductive layer. The pattern of change was different in accordance with soil properties and nitrogen fertilizers. In general, nitrification in urea and SCU plot was more increased than $(NH_4)_2SO_4$ plot. In reductive layer, the concentration of $NO_3-N$ was very low until 30 days incubation and thereafter increased slightly. 6. Upon the concentration of $NH_4-N$ and $NO_3-N$ in stagnant water and soil, it was assumed that denitification of urea and SCU plot was higher than $NH_4Cl$ and $(NH_4)_2SO_4$ plot and denitrified nitrogen in incubation period was above 50%.

  • PDF

Ammonia and Hydrogen Sulfide Removal from Swine House Exhaust Air Using a Dip Injection Wet Scrubber

  • Shin, Myeongcheol;Lee, Seunghun;Wi, Jisoo;Ahn, Heekwon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.615-622
    • /
    • 2017
  • This study was conducted to evaluate the odor reduction efficacy of the dip injection wet scrubber (DIWS) using tap water as washing fluid. The $NH_3$ and $H_2S$ removal efficiency of 7 day batch operated DIWS was evaluated twice over a total of 14 days of experiment. The $NH_3$ removal efficiency ranged from 26 to 37%. The $H_2S$ removal efficiency was between 22 and 30%. The pH of the washing fluid maintained below 8 and the $NH_4{^+}$ concentration tended to keep constant around 350 ppm after 5 days of washing-fluid replacement. Therefore, the 5-day washing fluid replacement interval is more preferable than the 7-day interval. The $NH_4{^+}$ concentration and the electrical conductivity (EC) showed a high correlation. The EC measurement can be used as an alternative to conventional $NH_4{^+}$ concentration measurement method for real time monitoring of washing fluid condition.

Formation of N Doped, p-type ZnO Films by Post-annealing in NH3 Ambient (NH3 분위기에서 후속 열처리에 의한 p형 ZnO 형성)

  • Jung, Eun-Soo;Kim, Hong-Seung;Cho, Hyung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.611-617
    • /
    • 2006
  • We report the preparation of N doped, p-type ZnO films by post-annealing in $NH_3$ ambient. The properties were examined by XRD, Hall-effect measurement, PL, and SIMS. ZnO films showed better crystallinity and electron concentration of $10^{15}-10^{17}/cm^3$ with post-annealing in $NH_3$ ambient. These films were converted to p-type ZnO by activation thermal annealing process at $800^{\circ}C$ under $N_2$ ambient. The electrical properties of the p-type ZnO showed a hole concentration of $1.06\times10^{16}/cm^3$, a mobility of $15.8cm^2/V{\cdot}s$, and a resistivity of $40.18\Omega{\cdot}cm$. The N doped ZnO films showed a strong photoluminescence peak at 3.306 eV at 13 K, which is closely related to neutral acceptor bound excitons of the p-type ZnO:N. In the SIMS spectra, the incorporation of nitrogen was confirmed.

Studies on the Modelling of Controlled Environment in Leaf Vegetable Crops (엽채류의 환경제어 모델 연구 I. 야온 및 양액내 $\textrm{NO}_3\;^-$: $\textrm{NH}_4\;^+$비가 백경채 및 탑채의 생육에 미치는 영향)

  • 박권우;신영주;이용범
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.21-27
    • /
    • 1992
  • The effects of different night temperatures and NO$_3$$^{[-10]}$ : NH$_4$$^{+}$ ratios in nutrient solution on the growth and quality of Chinese white cabbage(B. chinensis L. var. chinensis) and Chinese flat cabbage(B. chinensis L. var. rosularis) were studied. The results were summarized as follows. 1. Fresh weight was increased higher in night temperature 15$^{\circ}C$ than 5, 1$0^{\circ}C$, but content of vitamin C and dry weight ratio were increased as night temperature was lower. 2, The growth of Chinese white cabbage and Chinese flat cabbage was bad extremely in NO$_3$$^{[-10]}$ : NH$_4$$^{+}$(0 : 8), and the others were little different 3. In nutrient solution, the higher NO$_3$$^{[-10]}$ -N concentration was, the more content of vitamin C, and the higher NH$_4$$^{+}$-N concentration was, the more dry weight ratio.ratio.

  • PDF

Analysis of Free Ammonia Inhibition of Nitrite Oxidizing Bacteria Using a Dissolved Oxygen Respirometer

  • Kim, Dong-Jin;Lee, Dong-Ig;Cha, Gi-Cheol;Keller, Jurg
    • Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.125-130
    • /
    • 2008
  • Free ammonia ($NH_3$-N) inhibition of nitrite-oxidizing bacteria (NOB) has been widely studied for partial nitrification (or nitrite accumulation) and denitrification via nitrite ($NO_2^-$-N) as a low-cost treatment of ammonium containing wastewater. The literature on $NH_3$-N inhibition of NOB, however, shows disagreement about the threshold $NH_3$-N concentration and its degree of inhibition. In order to clarify the confusion, a simple and cheap respirometric method was devised to investigate the effect of free ammonia inhibition of NOB. Sludge samples from an autotrophic nitrifying reactor were exposed to various $NH_3$-N concentrations to measure the maximum specific nitrite oxidation rate ($\hat{K}_{NO}$) using a respirometer. NOB biomass was estimated from the yield values in the literature. Free ammonia inhibition of nitrite oxidizing bacteria was reversible and the specific nitrite oxidation rate ($K_{NO}$) decreased from 0.141 to 0.116, 0.100, 0.097 and 0.081 mg $NO_2^-$-N/mg NOB h, respectively, as the $NH_3$-N concentration increased from 0.0 to 1.0, 4.1, 9.7 and 22.9 mg/L. A nonlinear regression based on the noncompetitive inhibition mode gave an estimate of the Inhibition concentration ($K_I$) of free ammonia to be 21.3 mg $NH_3$-N/L. Previous studies gave $\hat{K}_{NO}$ of Nitrobacter and Nitrospira as 0.120 and 0.032 mg/mg VSS h. The free ammonia concentration which inhibits Nitrobacter was $30{\sim}50\;mg$ $NH_3$-N/L and Nitrospira was inhibited at $0.04{\sim}0.08\;mg$ $NH_3$-N/L. The results support the fact that Nitrobacter is the dominant NOB in the reactor. The variations in the reported values of free ammonia inhibition may be due to the different species of nitrite oxidizers present in the reactors. The respirometric method provides rapid and reliable analysis of the behavior and community of the nitrite oxidizing bacteria.

Development of Bacteria for Removal of the Nitrogen in Wastewater (하ㆍ폐수 고도처리를 위한 다기능의 질소원 분해능 균주의 분리)

  • 이진용;김진수;공성호;심호재;이상섭
    • Korean Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.21-26
    • /
    • 2003
  • Ninety strains of photosynthetic bacteria were isolated from a local stream at Kyonggi-do, Korea and were further screened. Using these isolated strains, experiments were performed under various light and oxygen conditions in order to select strains with high nitrogen $(NH_3-N,\; NO_3^--N)$ removal efficiencies. Results showed that all the strains screened removed $NH_3-N$, the light had no effect on nitrogen removal, and the nitrogen removal rate was higher aerobically than anaerobically. The removal of $NO_3^--N$ was showed up to 35.3% in some specific strains. Results of batch experiments using Rhodocyclus gelatinosus, an isolated strain with a superior removal rate of $NH_3--N$ and $NH_3-N$, under the anaerobic condition, showed that the removal rate of organics and $NH_3-N$ was the highest (98.2 and 89.0%, respectively) at the CODcr (mg/L)/biomass (mg/L) ratio of 0.2, and the $NH_3-N$ concentration did not increase with the decreasing $NH_3-N$ concentration. Experimental results from various C/N ratios confirmed that the effective removal rate (75.8%) of $NH_3-N$ occurred even at the low (5:1) C/N ratio as well as high ratios, and the simulataneous removal of $NO_3^--N$ (96.0%).

Effect of Etching Treatment of SAPO-34 Catalyst on Dimethyl Ether to Olefins Reaction (DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과)

  • Song, Kang;Yoon, Young-Chan;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.32 no.1
    • /
    • pp.20-27
    • /
    • 2021
  • Effects of the etching treatment of SAPO-34 catalyst were investigated to improve the catalytic lifetime in DTO reaction. The aqueous NH3 solution was a more appropriate treatment agent which could control the degree of etching progress, compared to that of using a strong acid (HCl) or alkali (NaOH) solution. Therefore, the effect on characteristics and lifetime of SAPO-34 catalyst was observed using the treatment concentration and time of aqueous NH3 solution as variables. As the treatment concentration or time of aqueous NH3 solution increased, the growth of erosion was proceeded from the center of SAPO-34 crystal plane, and the acid site concentration and strength gradually decreased. Meanwhile, it was found that external surface area and mesopore volume of SAPO-34 catalyst increased at appropriate treatment conditions. When the treatment concentration and time were 0.05 M and 3 h, respectively, the lifetime of the treated SAPO-34 catalyst was the longest, and was significantly enhanced by ca. 36% (based on DME conversion of > 90%) compared to that of using the untreated catalyst. The model for the etching progress of SAPO-34 catalyst in a mild treatment process using aqueous NH3 solution was also proposed.

Nitrification at Low Concentration of NH4+-N by using Attached Growth in Zeolite Media (제올라이트 여재의 부착성장을 이용한 저농도 NH4+-N의 생물학적 질산화 처리)

  • Kim, Jin-Su;Kang, Min-Koo;Yang, Chang-Hwan;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.10
    • /
    • pp.561-567
    • /
    • 2017
  • This study focused on estimating the low concentration of $NH_4{^+}-N$ removal by using simultaneous reaction of the adsorption and microbial nitrification with microbe-attached zeolite media. To evaluate the adsorption effect of the zeolite media, the expanded polypropylene (EPP) media which are not able to adsorb $NH_4{^+}-N$ were used as a control media in order to compare the adsorption ability. Each media was used to experiment after aerated 8 hr for attachment of the microbes. The batch experiment shows that nitrification occurred in zeolite media better than EPP media because nitrifiers could consume the relatively enough amount of $NH_4{^+}-N$ adsorbed onto the zeolite media. Compared to the reactor with EPP media, nitrification occurred only in the reactor with zeolite media under continuous operation at the empty bed contact time (EBCT) of 25 min and 3 mg/L of $NH_4{^+}-N$ concentration. As the EBCT of the reactor with zeolite media increased from 10 to 60 min, the nitrification efficiencies increased too. $NH_4{^+}-N$ removal efficiency showed up more than 90% at EBCT 60 min. And the difference in concentration of the total nitrogen between the influent and the effluent was 0.25 mg/L at EBCT 10 min, 0.78 mg/L at EBCT 25 min, 0.59 mg/L at EBCT 40 min and 0.37 mg/L at EBCT 60 min, respectively. This difference was due to between adsorption rate and nitrification rate of $NH_4{^+}-N$, and it was considered that $NH_4{^+}-N$ was adsorbed on the zeolite media by the gap of the concentration.