• Title/Summary/Keyword: NF-kB

Search Result 1,696, Processing Time 0.041 seconds

Anti-inflammation effect of blueberry (Vaccinium ashei) leaf extract on RAW 264.7 macrophages stimulated by lipopolysaccharide (Lipopolysaccharide에 의해 활성화된 RAW 264.7대식세포에서 블루베리 잎(Vaccinium ashei) 추출물의 항염증 효과)

  • Kim, Dong In;Kim, Hyun Jung;Yun, Jong Moon;Lee, Ji Hye;Han, So Jung;Kim, Ha Eun;Jang, Min Jung;An, Bong Jeun
    • Food Science and Preservation
    • /
    • v.25 no.1
    • /
    • pp.107-116
    • /
    • 2018
  • The aim of this study is to investigate the antioxidant and intracellular anti-inflammatory efficacy of blueberry leaf extracted with hot water (BLW), 70% ethanol (BLE), and 70% acetone (BLA) in RAW 264.7 macrophages. In order to evaluate the anti-inflammatory effect of blueberry leaf extracts, RAW 264.7 macrophages were stimulated with lipopolysaccharide (LPS) to induce the production of inflammation-related factors, which were measure by Western blotting and real-time PCR methods. i-NOS, COX-2 protein, and mRNA expression showed concentration-dependent decrease. The decreases in the mRNA expression levels of interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6), tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and prostaglandin $E_2$ ($PGE_2$) were concentration-dependent. Further, the antioxidant effects of blueberry leaf on total polyphenol contents, electron donating ability and $ABTS^+$ radical scavenging activity were evaluated. The total polyphenol contents of BLW, BLE, and BLA were $217.04{\pm}2.98$, $156.72{\pm}3.90$, and $182.88{\pm}3.02mg\;TAE/g$, respectively, while the electron donating abilities at $1,000{\mu}g/mL$ of BLW, BLE, and BLA were 81.7, 79.6, and 79.3%, respectively. The $ABTS^+$ radical scavenging activity was fond to be concentration dependent. The nitric oxide (NO) production inhibition activities at $50{\mu}g/mL$ of BLW, BLE, and BLA were 35.1, 42.4 and 42.7%, respectively. In conclusion, the antioxidant and anti-inflammatory test results indicate that blueberry leaf extracts (BLW, BLE, and BLA) can be used as potential anti-inflammatory agents.

Selection and Mechanism of Anti-Obesity Agents from Natural Products Based on Anti-Angiogenesis (신생혈관형성억제작용을 기반으로 한 항비만제제의 선별 및 작용기전)

  • Shin, Jin-Hyuk;Lee, Jin-Hee;Kang, Kyeong-Wan;Hwang, Jae-Ho;Han, Kyeong-Ho;Shin, Tai-Sun;Kim, Min-Yong;Kim, Jong-Deog
    • KSBB Journal
    • /
    • v.24 no.2
    • /
    • pp.122-130
    • /
    • 2009
  • Anti-angiogenic mechanism was examined for anti-obesity agents with the extract of P.radix, P.semen, S.hebra and C.furctus through anti-cell adhesion effect and western blot. Cell adhesion molecules, VCAM-1 was supressed with the order of P.radix (0.2 ppm, 125%) > P.semen (0.5 ppm, 100%) > S.hebra (5.0 ppm, 114%) > C. furctus (5.0 ppm, 111.8%), ICAM-1 was inhibited by P.radix (0.25 ppm, 130%) > P.semen (0.5 ppm, 100%) > S.hebra (5.0 ppm, 138%) > C. furctus (5.0 ppm, 66.7%), E-Selectin was also supressed P.radix (0.25 ppm, 100%) > P.semen (1.0 ppm, 128%) > S.hebra (5.0 ppm, 120%) > C. furctus (5.0 ppm, 100.7%). And signal molecules, VE-cadherin was supressed by P.radix and S.hebra, ${\beta}$-catenin was inhibited by P.radix, and Akt was supressed all these 4 kinds of natural products. These P.radix, P.semen, S.hebra and C.furctus were showed the possibility of anti-obesity agents based on anti-angiogenesis.

Effect of Application Level of Swine Slurry on Growth Characteristics and Yield of Sorghum$\times$Sudangrass Hybrid and $NO_3-N$ Content in Infiltration Water (돈분액비 시용수준이 수수$\times$수단그라스 교잡종의 생육특성, 수량 및 용탈수 중 $NO_3-N$ 함량에 미치는 영향)

  • Lim Young-Chul;Yoon S.H.;Kim J.G.;Kim W.H.;Choi G.J.;Seo S.;Yook W.B.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.1
    • /
    • pp.35-40
    • /
    • 2006
  • This experiment was conducted to investigate the effect of application level of swine slurry on the growth characteristics and yield of sorghum$\times$sudangrass hybrid and $NO_3-N$ content in infiltration at experimental field of Grassland and Forage Crops Division, National Livestock Research Institute, RDA from 2000 to 2002. Treatments were consisted of non fertilizer(NF), chemical fertilizer(CF), 100% swine slurry(SS 100), 150% swine slurry(SS 150), 200% swine slurry(SS 200) and 100% swine slurry + CF 50%(SS100 + CF 50) with randomized complete block design and three replications. Growth of sorghum$\times$sudangrass hybrid was not nearly different among the treatments, but early growth of swine slurry treatments was better than that of CF, and regrowth after 1st cutting was shown better in CF and SS 100+CF 50 with adding application of chemical fertilizer. The sugar content(brix %) was tends to be increased with swine slurry application. Dry matter(DM) yields of SS 100 and SS 150 were lower 15 and 6% than that of CF, respectively, and SS 200 was similer to CF, but there was not found significant difference among all treatments. The content of crude protein(CP), acid detergent fiber(ADF), and neutral detergent fiber(NDF) did not show the difference. The content of $NO_3-N$ in infiltration water was not more than CF by the 55 150 application, but more than by SS 200 and 55 100+CF 50 treatment.

  • PDF

Effect of ω3-Fatty Acid Desaturase Gene Expression on Invasion and Tumorigenicity in Human Tongue Squamous Cell Carcinoma Cells (인체 혀의 편평세포암 세포에서 ω3-fatty acid desaturase 유전자 발현이 침윤 및 종양형성에 미치는 영향)

  • Hong, Tae-Hwa;Shin, Soyeon;Han, Seung-Hyeon;Hwang, Byung-Doo;Lim, Kyu
    • Journal of Life Science
    • /
    • v.28 no.8
    • /
    • pp.945-954
    • /
    • 2018
  • Omega-3 polyunsaturated fatty acids (${\omega}3$-fatty acid) have been found to possess anticancer properties in a variety of cancer cell lines and animal models, but their effects in human tongue squamous cell carcinomas (SCCs) remain unclear. This study was designed to examine the effect of ${\omega}3$-fatty acid desaturase (fat-1) gene expression on invasion and tumorigenicity in human tongue SCC cells and the molecular mechanism of its action. Docosahexaenoic acid (DHA) treatment inhibited in vitro invasion in a dose-dependent manner. In zymography, matrix metalloproteinase-9 (MMP-9) and Matrix metallopeptidase-2 (MMP-2) activities were reduced, and MMP-9 and MMP-2 promoter activities were inhibited by the DHA treatment. In addition, cyclooxygenase-2 (COX-2) and vascular endothelial growth factor (VEGF) promoter reporter activities were inhibited in SCC-4 and SCC-9 cells after the DHA treatment. To investigate the effect of a high level of endogenous ${\omega}3$ fatty acids, a stable SCC-9 cell line expressing the ${\omega}3$-desaturase gene (fSCC-9sc) was generated. The growth rate and colony-forming capacity of fSCC-9sc were remarkably decreased as compared with those of fSCC-9cc. Likewise, the tumor size and volume of fSCC-9sc implanted into nude mice were significantly inhibited, with increases in the cell death index. Furthermore, a transwell chamber invasion assay showed a reduction in cell invasion of the fSCC-9sc lines when compared with that of the fSCC-9cc line. These findings suggested that fat-1 gene expression inhibited tumorigenicity, as well as invasion in human tongue SCC cells. Thus, utilization of ${\omega}3$ fatty acids may represent a promising therapeutic approach for chemoprevention and the treatment of human tongue SCCs.

Induction of c-Jun Expression by Breast Cancer Anti-estrogen Resistance-3 (BCAR3) in Human Breast MCF-12A Cells (정상적인 인간유방상피세포인 MCF-12세포에서 유방암 항에스토젠 내성인자-3 (BCAR3)에 의한 c-Jun 발현 유도 연구)

  • Oh, Myung-Ju;Kim, Ji-Hyun;Jhun, Byung Hak
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1383-1391
    • /
    • 2016
  • Anti-estrogen drugs such as tamoxifen have been used for treating patients with ER-positive, early breast cancer. However, resistance to anti-estrogen treatment is inevitable in most patients. Breast cancer anti-estrogen resistance-3 (BCAR3) has been identified as the protein responsible for the induction of tamoxifen resistance in estrogen-dependent human breast cancer. We have previously reported that BCAR3 regulates the cell cycle progression and the signaling pathway of EGF and insulin leading to DNA synthesis. In this study, we investigated the functional role of BCAR3 in regulating c-Jun transcription in non-tumorigenic human breast epithelial MCF-12A cells. A transient transfection of BCAR3 increased both the mRNA and protein of c-Jun expression, and stable expression of BCAR3 increased c-Jun protein expression. The overexpression of BCAR3 directly activated the promoter of c-jun, AP-1, and SRE but not that of $NF-{\kappa}B$. Furthermore, single-cell microinjection of BCAR3 expression plasmid in the cell cycle-arrested MCF-12A cells induced c-Jun protein expression, and co-injection of dominant negative mutants of Ras, Rac, and Rho suppressed the transcriptional activity of c-Jun in the presence of BCAR3. Furthermore, stable expression of BCAR3 increased the proliferation of MCF-12A cells. The microinjection of inhibitory materials such as anti-BCAR3 antibody and siRNA BCAR3 inhibited EGF-induced c-Jun expression but did not affect IGF-1 induced upregulation of c-Jun. Taken together, we propose that BCAR3 plays a crucial role in c-Jun protein expression and cell proliferation and that small GTPases (e.g., Ras, Rac, and Rho) are required for the BCAR3-mediated activation of c-Jun expression.

Application of Plant Flavonoids as Natural Antioxidants in Poultry Production (가금 생산에서 천연 항산화제로서 식물성 Flavonoids의적용)

  • Kang-Min, Seomoon;In-Surk, Jang
    • Korean Journal of Poultry Science
    • /
    • v.49 no.4
    • /
    • pp.211-220
    • /
    • 2022
  • Poultry are exposed to extremely high levels of oxidative stress as a consequence of the excessive production of reactive oxygen species (ROS) induced by endogenous and exogenous stressors, such as high-stocking densities, thermal stress, environmental and feed contamination, along with factors associated with intensive breeding systems. Oxidative stress promotes lipid peroxidation, DNA damage, and inflammation, which can have detrimental effects on the health of birds. During the course of evolution, birds have developed antioxidant defense mechanisms that contribute to maintaining homeostasis when exposed to endogenous and exogenous stressors. The primary antioxidant defense systems are enzymatic and non-enzymatic in nature and play roles in protecting cells from ROS attack. Recently, plant flavonoids, which have been established to reduce oxidative stress, have been attracting considerable attention as potential feed additives. Flavonoids are a group of polyphenolic compounds that can be stabilized by binding structural compounds with ROS, and can promote the elimination of ROS by inducing the expression of antioxidant enzymes. However, although flavonoids can contribute to reducing lipid peroxidation and thereby enhance the antioxidant capacity of birds, they have low solubility in the gastrointestinal tract, and consequently, it is necessary to develop a delivery technology that can facilitate the effect intestinal absorption of these compounds. Furthermore, it is important to determine the dietary levels of flavonoids by assessing the exact antioxidant effects in the gastrointestinal tract wherein the concentrations of dietary flavonoids are highest. It is also necessary to examine the expression of transcriptional factors and vitagenes associated with the efficient antioxidant effects induced by flavonoids. It is anticipated that the application of flavonoids as natural antioxidants will become a particularly important field in the poultry industry.