• 제목/요약/키워드: NEXTSat-1

검색결과 30건 처리시간 0.018초

Operational Concept of the NEXTSat-1 for Science Mission and Space Core Technology Verification

  • Shin, Goo-Hwan;Chae, Jang-Soo;Lee, Sang-Hyun;Min, Kyung-Wook;Sohn, Jong-Dae;Jeong, Woong-Seob;Moon, Bong-Gon
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권1호
    • /
    • pp.67-72
    • /
    • 2014
  • The next generation small satellite-1 (NEXTSat-1) program has been kicked off in 2012, and it will be launched in 2016 for the science missions and the verification of space core technologies. The payloads for these science missions are the Instrument for the Study of Space Storms (ISSS) and NIR Imaging Spectrometer for Star formation history (NISS). The ISSS and the NISS have been developed by Korea Advanced Institute of Science and Technology (KAIST) and Korea Astronomy and Space science Institute (KASI) respectively. The ISSS detects plasma densities and particle fluxes of 10 MeV energy range near the Earth and the NISS uses spectrometer. In order to verify the spacecraft core technologies in the space, the total of 7 space core technologies (SCT) will be applied to the NEXTSat-1 for space verification and those are under development. Thus, the operation modes for the ISSS and the NISS for space science missions and 7 SCTs for technology missions are analyzed for the required operation time during the NEXTSat-1's mission life time of 2 years. In this paper, the operational concept of the NEXTSat-1's science missions as well as the verification of space core technologies are presented considering constraints of volume, mass, and power after launch.

Communications Link Design and Analysis of the NEXTSat-1 for SoH File and Mission Data Using CAN Bus, UART and SerDesLVDS

  • Shin, Goo-Hwan;Chae, Jang-Soo;Min, Kyung-Wook;Sohn, Jong-Dae;Jeong, Woong-Seob;Lee, Dae-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • 제31권3호
    • /
    • pp.235-240
    • /
    • 2014
  • The communications link in a space program is a crucial point for upgrading its performance by handling data between spacecraft bus and payloads, because spacecraft's missions are related to the data handling mechanism using communications ports such as a controlled area network bus (CAN Bus) and a universal asynchronous receiver and transmitter (UART). The NEXTSat-1 has a lot of communications ports for performing science and technology missions. However, the top level system requirements for the NEXTSat-1 are mass and volume limitations. Normally, the communications for units shall be conducted by using point to point link which require more mass and volume to interconnect. Thus, our approach for the novel communications link in the NEXTSat-1 program is to use CAN and serializer and deserializer low voltage differential signal (SerDesLVDS) to meet the system requirements of mass and volume. The CAN Bus and SerDesLVDS were confirmed by using already defined communications link for our missions in the NEXTSat-1 program and the analysis results were reported in this study in view of data flow and size analysis.

Electronics Design of the NISS onboard NEXTSat-1

  • Lee, Dae-Hee
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.55.2-55.2
    • /
    • 2015
  • NISS is a unique spaceborne imaging spectrometer (R = 20) onboard the Korea's next micro-satellite NEXTSat-1 to investigate the star formation history of Universe in near infrared wavelength region (0.9 - 3.8 um), with a customized H1RG IR sensor(Jeong 2014). In this paper, we will introduce the compact electronics system (Fig. 1) as well as the novel readout method to reduce the 1/f noise for NISS.

  • PDF

차세대소형위성 2호 영상 레이다 안테나 개발 및 차량 탑재 시험 (Development and Field Test of the NEXTSat-2 Synthetic Aperture Radar (SAR) Antenna Onboard Vehicle)

  • 신구환;이정수;장태성;김동국;정영배
    • 우주기술과 응용
    • /
    • 제1권1호
    • /
    • pp.33-40
    • /
    • 2021
  • 본 논문에서는 총 무게 42 kg 이내의 요구사항을 토대로 차세대소형위성 2호 영상 레이다 시스템을 개발한 결과를 보고한다. 차세대소형위성 2호는 소형급 인공위성으로, 탑재체의 무게 비중이 전체 무게 대비 약 40% 정도를 차지하도록 설계하였다. 영상 레이다 시스템은 안테나, RF송수신기, 기저대역 신호처리기, 전력부 등으로 구성되며, 이 중에서 특히 무게 비중이 큰 부품은 영상 레이다의 핵심인 안테나이다. 안테나 설계시 이득, 효율 등을 고려한 다양한 선택이 가능하지만, 차세대소형위성 2호 사업에서 요구하는 무게, 전력 및 해상도 등을 반영하여 Micro-strip Patch Array 안테나를 채택하여 설계하였다. 차세대소형위성 2호의 임무 요구 조건에 부합하도록 안테나의 주파수는 9.65 GHz, 이득은 42.7 dBi 그리고 반사손실은 -15 dB로 규정하여 개발하였으며, 차량에 탑재한 현장시험을 통하여 요구 성능의 충족 여부를 검증하였다.

차세대 인공위성 전기저항제트 가스추력기의 다물리 수치모사 (MULTI-PHYSICAL SIMULATION FOR THE DESIGN OF AN ELECTRIC RESISTOJET GAS THRUSTER IN THE NEXTSAT-1)

  • 장세명;최진철;한조영;신구환
    • 한국전산유체공학회지
    • /
    • 제21권2호
    • /
    • pp.112-119
    • /
    • 2016
  • NEXTSat-1 is the next-generation small-size artificial satellite system planed by the Satellite Technology Research Center(SatTReC) in Korea Advanced Institute of Science and Technology(KAIST). For the control of attitude and transition of the orbit, the system has adopted a RHM(Resisto-jet Head Module), which has a very simple geometry with a reasonable efficiency. An axisymmetric model is devised with two coil-resistance heaters using xenon(Xe) gas, and the minimum required specific impulse is 60 seconds under the thrust more than 30 milli-Newton. To design the module, seven basic parameters should be decided: the nozzle shape, the power distribution of heater, the pressure drop of filter, the diameter of nozzle throat, the slant length and the angle of nozzle, and the size of reservoir, etc. After quasi one-dimensional analysis, a theoretical value of specific impulse is calculated, and the optima of parameters are found out from the baseline with a series of multi-physical numerical simulations based on the compressible Navier-Stokes equations for gas and the heat conduction energy equation for solid. A commercial code, COMSOL Multiphysics is used for the computation with a FEM (finite element method) based numerical scheme. The final values of design parameters indicate 5.8% better performance than those of baseline design after the verification with all the tuned parameters. The present method should be effective to reduce the time cost of trial and error in the development of RHM, the thruster of NEXTSat-1.

차세대소형위성2호의 X대역 합성 개구 레이더 탑재를 위한 200 W급 송·수신 모듈의 설계 및 개발 (Design and Development of 200 W TRM on-board for NEXTSat-2 X-band SAR)

  • 김지흥;최현태;이정수;장태성
    • 한국항행학회논문지
    • /
    • 제26권6호
    • /
    • pp.487-495
    • /
    • 2022
  • 본 논문에서는 차세대소형위성2호의 X 대역 합성 개구 레이더(SAR; synthetic aperture radar)에 탑재하기 위한 고출력 송·수신 모듈의 설계 및 개발에 관하여 논한다. 모듈은 X 대역의 대상 주파수 범위에서 100 MHz 의 대역폭을 갖는 고출력 펄스 신호를 출력하며, 수신신호에 대해 저잡음 증폭 기능을 수행한다. 제작된 모듈의 송신경로는 200 watt (53.01 dBm) 이상의 출력 신호 세기, 0.35 dB의 펄스폭 기울기, 송신 신호 출력간 0.04 dB 의 신호 세기 변화 및 1.7 ˚ 의 위상 변화를 갖고, 수신경로는 3.81 dB 의 잡음지수, 37.38 ~ 37.46 dB 의 이득을 가짐으로써, 요구되는 성능을 만족함을 확인하였다. 제작된 모듈은 차세대소형위성2호 비행모델에 장착되어 있으며, 추후 누리호에 탑재되어 발사될 예정이다.

차세대 소형위성 1호 충격시험 계측/분석 프로그램 개발 (Development of Shock Test Measurement/Analysis Program for NEXTSat-1)

  • 성태현;진재현;김상균
    • 항공우주시스템공학회지
    • /
    • 제10권2호
    • /
    • pp.34-40
    • /
    • 2016
  • A satellite is exposed to various impact environment until orbit entry. It is particularly undergoing the biggest impact by pyro shock, which is generated when the launch vehicle stages are separated or the satellite is separated from the launch vehicle. In this paper, due to the fact that the pyro shock is prerequisite for performing the test and verification on the ground, we developed an air-gun type shock tester for NEXTSat-1 shock test at the KAIST SaTReC along with the development of program introduced by LabVIEW software. The program operated in shock tester is consist of data measurement and analysis with the convenient implementation of user interface and its easy modification of the code.

Initial Operation and Preliminary Results of the Instrument for the Study of Stable/Storm-Time Space (ISSS) on Board the Next Generation Small Satellite-1 (NEXTSat-1)

  • Kim, Eojin;Yoo, Ji-Hyeon;Kim, Hee-Eun;Seo, Hoonkyu;Ryu, Kwangsun;Sohn, Jongdae;Lee, Junchan;Seon, Jongho;Lee, Ensang;Lee, Dae-Young;Min, Kyoungwook;Kang, Kyung-In;Lee, Sang-Yun;Kang, Juneseok
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권3호
    • /
    • pp.209-218
    • /
    • 2020
  • This paper describes the initial operations and preliminary results of the Instrument for the study of Stable/Storm-time Space (ISSS) onboard the microsatellite Next Generation Small Satellite-1 (NEXTSat-1), which was launched on December 4, 2018 into a sun-synchronous orbit at an altitude of 575 km with an orbital inclination angle of 97.7°. The spacecraft and the instruments have been working normally, and the results from the observations are in agreement with those from other satellites. Nevertheless, improvement in both the spacecraft/instrument operation and the analysis is suggested to produce more fruitful scientific results from the satellite operations. It is expected that the ISSS observations will become the main mission of the NEXTSat-1 at the end of 2020, when the technological experiments and astronomical observations terminate after two years of operation.