• Title/Summary/Keyword: NEUTRON

Search Result 1,986, Processing Time 0.03 seconds

Radiation Effect of X-Ray and Thermal Neutron on Robinia pseudoacacia L. and Some Other Species (아까시나무외 몇 수종(樹種)에 대(對)한 X-Ray와 Thermal Neutron의 조사효과(照射効果))

  • Kim, Chung Suk;Lee, Suk Koo;Hyun, Sin Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 1973
  • In an effort to improve the major tree species in Korea, the seed of Robinia pseudoacacia, Pinus rigida, Pinus densiflora, Pinus thunbergii and Larix leptolepis were treated with X-ray and thermal neutron at the Brookhaven National Laboratory, and germination rate of the seed and some characteristics of the seedlings from irradiated seed were investigated and the results were summarized as follows. 1. The germination rate of the irradiated seed of Robinia pseudoacacia, Pinus densiflora, Pinus thunbergii and Pinus rigida was decreased, when the irradiation time of thermal neutron increased from 3 hours to 9 hours. The seed of Larix leptolepis was completely died out in all range of irradiation time. 2. The seed of Pinus densiflora, Robinia pseudoacacia and Pinus rigida showed low germination rate, when the dosage of radiation increased in the range of 10,000r-30,000r X-ray. This dosage of radiation was almost lethal to the seed of Pinus thunbergii and Larix leptolepis. 3. The growth rate of radiated Robinia pseudoacacia has been decreased when the dosage of X-ray and thermal neutron increased. However, the trees treated with thermal neutron for 3 hours showed 14.9 percent-increase in seedling height and some thornless individuals appeared in this treatment. 4. Individuals with variegated leaf, rugose leaf and albino were appeared in X-ray and thermal neutron treatment. 5. Abnormal mitosis of somatic cell, cell with two nucleoli, cell with two nuclei and chromosome clump in mitosis of somatic cell were observed in Robinia pseudoacacia irradiated with thermal neutron. 6. Resistanty against pawdery mildew was decreased in Robinia pseudoacacia radiated with X-ray and thermal neutron. 7. Length of stomata did not show any difference however number of stomata per unit area decreased in Robinia pseudoacacia radiated with thermal neutron. The leaves of Robinia pseudoacacia radiated with thermal neutron were thicker than those of non-treated one, but width of palisade tissue was decreased. The most sensitive one among those species to the thermal neutron treatment was Larix leptolepis, followed by Pinus densiflora, Robinia pseudoacacia, Pinus thunbergii and Pinus rigida in the order. In X-ray treatment, the most sensitive one was Larix leptolepis, followed by Pinus densiflora, Pinus thunbergii, Pinus rigida and Robinia pseudoacacia in the order. Morphological, cytological variation of the radiated Robinia pseudoacacia seemed to indicate some possibility to be used for tree improvement.

  • PDF

MCNPX Simulation of Scattered Neutron Distribution in Experimental Room for the Neutron Reference Field of Monoenergetic Neutron below 2.5 MeV (2.5 MeV 이하 단색 중성자 표준장에 대한 중성자 실험실내의 산란 중성자 분포 전산모사)

  • Park, Jung-Hun;Kim, Gi-Dong
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.2
    • /
    • pp.59-63
    • /
    • 2011
  • It is important to reduce indirect scattered neutron beside direct neutron of chosen energy for designing a neutron-reference-field laboratory with neutron produced from a nuclear reaction by a accelerator. Therefore MCNPX simulation was performed with various conditions for obtaining such condition. At first in the original laboratory condition we calculated the direct neutron flux which was inserted in chamber (virtual chamber composed of air) of 0 degree (proton moving direction) for neutron flux measurement and the scattered neutron flux which is inserted in the chamber after scattering wall or bottom. In the result, the scattered neutron which was inserted after scattering bottom is more than that which was inserted after scattering the others. Therefore MCNPX simulation was again performed with removing the concrete bottom and with removing the concrete bottom and digging 1 m in the ground. In the result of removing concrete bottom and digging 1 m in the ground, scattered neutron which was inserted after scattering bottom became less than that which was inserted after scattering the others.

An adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning

  • Cao, Chenglong;Gan, Quan;Song, Jing;Yang, Qi;Hu, Liqin;Wang, Fang;Zhou, Tao
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2452-2459
    • /
    • 2020
  • Neutron spectrum is essential to the safe operation of reactors. Traditional online neutron spectrum measurement methods still have room to improve accuracy for the application cases of wide energy range. From the application of artificial neural network (ANN) algorithm in spectrum unfolding, its accuracy is difficult to be improved for lacking of enough effective training data. In this paper, an adaptive deviation-resistant neutron spectrum unfolding method based on transfer learning was developed. The model of ANN was trained with thousands of neutron spectra generated with Monte Carlo transport calculation to construct a coarse-grained unfolded spectrum. In order to improve the accuracy of the unfolded spectrum, results of the previous ANN model combined with some specific eigenvalues of the current system were put into the dataset for training the deeper ANN model, and fine-grained unfolded spectrum could be achieved through the deeper ANN model. The method could realize accurate spectrum unfolding while maintaining universality, combined with detectors covering wide energy range, it could improve the accuracy of spectrum measurement methods for wide energy range. This method was verified with a fast neutron reactor BN-600. The mean square error (MSE), average relative deviation (ARD) and spectrum quality (Qs) were selected to evaluate the final results and they all demonstrated that the developed method was much more precise than traditional spectrum unfolding methods.

Photoluminescence of Neutron-irradiated GaN Films and Nanowires

  • Seong, Ho-Jun;Yeom, Dong-Hyuk;Kim, Hyun-Suk;Cho, Kyoung-Ah;Kim, Sang-Sig
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.603-609
    • /
    • 2008
  • Photoluminescence (PL) of neutron-irradiated GaN films and nanowires is investigated in this study. The GaN films and nanowires were irradiated by neutron beams in air at room temperature, and the neutron-irradiated films and nanowires were annealed in an atmosphere of $NH_3$ at temperatures ranging from 500 to $1100^{\circ}C$. The line-shapes of the PL spectra taken from the neutron-irradiated GaN films and nanowires were changed differently with increasing annealing temperature. In this study, light-emitting centers created in the neutron-irradiated GaN films and nanowires are examined and their origins are discussed. In addition, it is suggested here that the neutron-transmutation-doping is a simple and useful means of homogeneous impurity doping into nanowires with control of the doping concentration.

A Study on the Characteristic of the $^6Li$ Neutron Spectrometer ($^6Li$ 중성자분광계 특성 연구)

  • Choe, Seong-Ho;Kang, Sam-Woo;Lee, Kwang-Pill;Lee, Kyung-Ju;Hwang, Sun-Tae
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.57-61
    • /
    • 1992
  • For the neutron spectrum measurement, $^6Li$ neutron spectrometer system is installed. The characteristic of the $^6Li$ detector are investigated using a $^{137}Cs$ and $^{207}Bi$ point source, and the neutron capture peaks and the pulse height spectrum using an $^{214}Am-Be$ neutron source are measured. Furthermore, the pulse height spectrum for the irradiation time variation from the (214)^Am-Be neutron source, and for the distance variation between detector and source, and the threshold variation of discriminator are measured.

  • PDF