• Title/Summary/Keyword: NECP-MCX

Search Result 3, Processing Time 0.021 seconds

Homogenized cross-section generation for pebble-bed type high-temperature gas-cooled reactor using NECP-MCX

  • Shuai Qin;Yunzhao Li;Qingming He;Liangzhi Cao;Yongping Wang;Yuxuan Wu;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3450-3463
    • /
    • 2023
  • In the two-step analysis of Pebble-Bed type High-Temperature Gas-Cooled Reactor (PB-HTGR), the lattice physics calculation for the generation of homogenized cross-sections is based on the fuel pebble. However, the randomly-dispersed fuel particles in the fuel pebble introduce double heterogeneity and randomness. Compared to the deterministic method, the Monte Carlo method which is flexible in geometry modeling provides a high-fidelity treatment. Therefore, the Monte Carlo code NECP-MCX is extended in this study to perform the lattice physics calculation of the PB-HTGR. Firstly, the capability for the simulation of randomly-dispersed media, using the explicit modeling approach, is developed in NECP-MCX. Secondly, the capability for the generation of the homogenized cross-section is also developed in NECP-MCX. Finally, simplified PB-HTGR problems are calculated by a two-step neutronics analysis tool based on Monte Carlo homogenization. For the pebble beds mixed by fuel pebble and graphite pebble, the bias is less than 100 pcm when compared to the high-fidelity model, and the bias is increased to 269 pcm for pebble bed mixed by depleted fuel pebble. Numerical results show that the Monte Carlo lattice physics calculation for the two-step analysis of PB-HTGR is feasible.

The methods of CADIS-NEE and CADIS-DXTRAN in NECP-MCX and their applications

  • Qingming He;Zhanpeng Huang;Liangzhi Cao;Hongchun Wu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2748-2755
    • /
    • 2024
  • This paper presents two new methods for variance reduction for shielding calculation in Monte Carlo radiation transport. One method is CADIS-NEE, which combines Consistent Adjoint Driven Importance Sampling (CADIS) and next-event estimator (NEE) methods to increase the calculation efficiency of tallies at points. The other is CADIS-deterministic transport (DXTRAN), which combines CADIS and DXTRAN to obtain higher performance than using CADIS and DXTRAN separately. The combination processes are derived and implemented in the hybrid Monte-Carlo-Deterministic particle-transport code NECP-MCX. Various problems are tested to demonstrate the effectiveness of the two methods. According to the results, the two combination methods have higher efficiency than using CADIS, NEE or DXTRAN separately. In a long-distance photon-transport problem, CADIS-NEE converges faster than NEE and the figure of merit (FOM) of CADIS-NEE is 75.6 times of NEE. In a labyrinthine problem, CADIS-DXTRAN's FOM surpasses that of DXTRAN and CADIS by a factor of 45.3 and 17.7, respectively. Therefore, it is advisable to employ these two novel methods selectively in appropriate scenarios to reduce variance.

Calculation of thermal neutron scattering data of MgF2 and its effect on beam shaping assembly for BNCT

  • Jiaqi Hu;Zhaopeng Qiao;Lunhe Fan;Yongqiang Tang;Liangzhi Cao;Tiejun Zu;Qingming He;Zhifeng Li;Sheng Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1280-1286
    • /
    • 2023
  • MgF2 as a moderator material has been extensively used in the beam shaping assembly (BSA) that plays an important role in the boron neutron capture therapy (BNCT). Regarded as important for applications, the thermal neutron scattering data of MgF2 were calculated, based on the phonon expansion model. The structural properties of MgF2 were researched by the VASP code based on the ab-initio methods. The PHONOPY code was employed to calculate the phonon density of states. Furthermore, the NJOY code was used to calculate the thermal neutron scattering data of MgF2. The calculated inelastic cross sections plus absorption cross sections are in agreement with the available experimental data. The neutron transport in the BSA has been simulated by using a hybrid Monte-Carlo-Deterministic code NECP-MCX. The results indicated that compared with the calculation of the free gas model, the thermal neutron flux and epithermal neutron flux at the BSA exit port calculated by using the thermal neutron scattering data of MgF2 were reduced by 27.7% and 8.2%, respectively.