• Title/Summary/Keyword: NEAT

Search Result 465, Processing Time 0.021 seconds

Visual Effects of Design Variations in Tailored Jackets Length of Collar, Number of Buttons and Single/Double Variation (테일러드 자켓 디자인 변화에 따른 시각적 효과 -칼라길이, 단추 수, Single/Double변화를 중심으로-)

  • 한정숙;류숙희
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.8
    • /
    • pp.1376-1386
    • /
    • 1997
  • The purpose of this study is to investigate how one's visual evaluations are affected by variations in internal designs of tailored jackets. Major findings are: 1. Of the 35 pairs of adjectives, the factor analysis singled out the following five major factors (total variance of 55.62%): elegance, maturity, neatness, hard/softness, and evaluation. 2. The image of tailored jackets were found to be significantly affected by the length of its collar: jackets with long collar were perceived elegant, graceful, neat, mature and slim. 3. The number of buttons was also found to have significant impact on the image of tailored jackets: A one-button jacket, single or double, was perceived graceful, mature, formal, neat, natural, brisk, slim and so on. Its image deteriorated as the number of buttons increased. 4. Single jackets were found to be significantly different from Double jacket in their images. The former were perceived elegant, neat, and natural.

  • PDF

A Study on Performance and Exhaust Emissions of DI Diesel Engine Operated with Neat DME and DME Blended Fuels (순수 DME 및 DME 혼합연료의 직접분사식 디젤기관의 성능 및 배기가스 특성에 관한 연구)

  • 표영덕;김강출;이영재;김문헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.75-82
    • /
    • 2003
  • DME is a good alternative fuel to reduce the smoke remarkably when used in a diesel engine, while problems concerned with low lubricity and high compressibility exist. In the present study, single cylinder DI diesel engine was operated with neat DME and DME blended fuels which are DME-diesel blended fuel and DME-propane blended fuel. The results showed that the power of the neat DME and DME blended fuels was the same as that of pure diesel oil, and the specific energy consumption slightly increased. In addition, smoke emission was considerably reduced with the increase of DME content up to zero level, but NOx emission was slightly increased.

Study of Molecular Reorientation in Liquid with Raman Spectroscopy (Ⅱ) Anisotropic Rotation of$C_6F_6$ in Neat Liquid

  • Wan-In Lee;Kook-Joe Shin;Myung-Soo Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.10-14
    • /
    • 1983
  • Anisotropic rotation of C$_{6}$F$_{6}$ in neat liquid is investigated by the analysis of the ν$_{1}$ and ν$_{15}$ (both C-F stretching) bands of Raman spectrum and diffusion constants for the spinning (D$_{II}$) and tumbling (D$_{⊥}$) motions are obtained by the rotational dffusion theory. The same analysis is also carried out for the ν$_{2}$ and ν$_{16}$ (both C-C stretching) bands and both results are compared with the results obtained for benzene in neat liquid. The results show that the reorientation of C$_{6}$F$_{6}$ is highly anisotropic and the anisotropy is greater for C$_{6}$F$_{6}$ than benzene. This is due to the fact that the spinning rate is about the same but the tumbling rate is sharply reduced for C$_{6}$F$_{6}$.

Neat Synthesis and Anti-oxidant Activity of α-Hydroxyphosphonates

  • Rao, K. Uma Maheswara;Sundar, Ch. Syama;Prasad, S. Siva;Rani, C. Radha;Reddy, C. Suresh
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.9
    • /
    • pp.3343-3347
    • /
    • 2011
  • A simple efficient and neat synthesis of ${\alpha}$-hydroxy phosphonates has been accomplished from aromatic/heterocyclic aldehydes and diethyl phosphite using $KHSO_4$ as a catalyst under solvent-free conditions at ambient temperature. These compounds are characterized by spectral and analytical data and tested for their anti-oxidant activity.

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites (대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.121-130
    • /
    • 2012
  • In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

Cure Kinetics of Cycloaliphatic Epoxy/Silica System for Electrical Insulation Materials in Outdoor Applications

  • Lee, Jae-Young;Park, Jae-Jun;Kim, Jae-Seol;Shin, Seong-Sik;Yoon, Chan-Young;Cheong, Jong-Hoon;Kim, Young-Woo;Kang, Geun-Bae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.2
    • /
    • pp.74-77
    • /
    • 2015
  • The cure kinetics of a neat epoxy system and epoxy/silica composite were investigated by DSC analysis. A cycloaliphatic type epoxy resin was diglycidyl 1,2-cyclohexanedicarboxylate and curing agent was anhydride type. To estimate kinetic parameters, the Kissinger equation was used. The activation energy of the neat epoxy system was 88.9 kJ/mol and pre-exponential factor was 2.64×1012 min−1, while the activation energy and pre-exponential factor for epoxy/silica composite were 97.4 kJ/mol and 9.21×1012 min−1, respectively. These values showed that the silica particles have effects on the cure kinetics of the neat epoxy matrix.

Study of Molecular Reorientation in Liquid with Raman Spectroscopy (I). Anisotropic Rotation of CDC$l_3$ in Neat Liquid (용액 중에서의 분자의 재배치 운동에 관한 라만 분광법적 연구 (제1보). 순수 액체상태의 $CDCl_3$에 관한 비등방성 회전)

  • Myung Soo Kim;Kook Joe Shin
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.205-209
    • /
    • 1982
  • Anisotropic rotation of $CDCl_3$ in neat liquid is investigated by the analysis of ${\nu}_1$ band of Raman spectrum and the diffusion constant($D_{\perp}$) for the tumbling motion is obtained. The diffusion constant ($D_{II}$) for the spinning motion is obtained from the above $D_{\perp}$ value and the chlorine-35 nuclear quadrupole relaxation time. The diffusion constants thus obtained seem to agree very well with the ones obtained from $^2H$ and $^35C$l in NQR results within experimental errors. The data suggest fairly anisotropic character of reorientational motions in neat $CDCl_3$.

  • PDF

FUEL PROPERTIES AND EMISSIONS CHARACTERISTICS OF ETHANOL-DIESEL BLEND ON SMALL DIESEL ENGINE

  • Xu, B.Y.;Qi, Y.L.;Zhang, W.B.;Cai, S.L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.

A Study on the Mechanical, Thermal, Morphological, and Water Absorption Properties of Wood Plastic Composites (WPCs) Filled with Talc and Environmentally-Friendly Flame Retardants (친환경 난연제와 탈크를 첨가한 목재·플라스틱 복합재의 기계적, 열적, 형태학적 및 수분흡수 특성에 관한 연구)

  • Lee, Danbee;Kim, Birm-June
    • Journal of the Korea Furniture Society
    • /
    • v.27 no.2
    • /
    • pp.137-144
    • /
    • 2016
  • Wood plastic composite (WPC) is a green composite made of wood flour and thermoplastics to provide better performance by removing the defects of both wood and plastics. However, relatively low thermal stability and poor fire resistance of wood and plastics included in WPC have been still issues in using WPC as a building material for interior applications. This study investigated the effect of environmentally-friendly flame retardants (EFFRs) on the mechanical, thermal, morphological, and water absorption properties of wood flour (WF)/talc/polypropylene (PP) composites in comparison with neat PP. The whole EFFRs-filled WF/talc/PP composites showed higher values in flexural strength, flexural modulus, and impact strength compared to neat PP. In thermal properties, aluminum hydroxide (AH)-filled composite showed a $36^{\circ}C$ reduction in maximum thermal decomposition temperature ($T_{max}$) compared to neat PP, but magnesium hydroxide (MH) played an important role in improving thermal stability of filled composite by showing the highest $T_{max}$. From this research, it can be said that MH has potentials in reinforcing PP-based WPCs with improvement of thermal stability.