• Title/Summary/Keyword: NEAP

Search Result 136, Processing Time 0.028 seconds

Fluctuation of Tidal Front and Expansion of Cold Water Region in the Southwestern Sea of Korea (한국 남서해역에서 조석전선의 변동과 저수온역 확장기작)

  • Jeong, Hee-Dong;Kwoun, Chul-Hui;Kim, Sang-Woo;Cho, Kyu-Dae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.289-296
    • /
    • 2009
  • The appearance and variation of cold water area and its expansion mechanism of tidal front in the south western coast of Korea in summer were studied on the basis of oceanographic data(1966-1995), satellite images from NOAA and SeaWiFs and numerical model. Cold water appearance in southwestern field of Jindo was due to the vertical mixing by strong tidal current. Tidal front where horizontal gradient of water temperature was more than $0.3^{\circ}C$/km parallels to contours of H/$U^3$ parameter 2.0~2.5 and the outer boundary of cold water region corresponds with contours of the parameter 2.5~3.0 in the southwestern sea of Korea during the period between neap and spring tides. The position replacement of tidal front formed in the study ares varies in a range of 25~75km and cold water region extends about 90km. These suggest that the magnitude of variation of frontal position and cold water area was proportionate to the tidal current during lunar tidal cycle. Moreover, it was estimated that the southwestward expansion of cold water region was derived from the southwestward tide-induced residual currents with speed more than 10cm/s.

  • PDF

Analysis of Tidal Asymmetric Characteristics in the Muan Bay (무안만의 조석비대칭적 특성 분석)

  • Kang, Ju Whan;Kim, Yang Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.3
    • /
    • pp.170-179
    • /
    • 2020
  • Tidal asymmetry would occur owing to shallow water tides at the Western Coast of macro tidal area. Especially, as ebb dominance of Mokpo coastal zone is known as the most prominent in Korea, it had been studied by domestic researchers. The cause of ebb dominance in Mokpo area is considered due to extensive inter-tidal zone in Muan Bay, and this has been studied based on amplification ratio, relative phase and skewness of tide/tidal flow curves in order to analyze qualitative tidal asymmetry. Furthermore, it was possible to figure out tidal characteristics with the difference of tidal amplitude and phase with Mokpo Harbor by observing the tide for 15 days in Muan Bay, which showed 40 minutes shorter ebbing time than at Mokpo Harbor. In addition, tidal flow prediction data in Mokpo North Harbor and Mokpo-Gu were analyzed. Meanwhile, the basis regarding qualitative interpretation of bed sediment and suspended sediment was provided by examining the qualitative changes in tidal asymmetry for spring-neap tidal cycle through the PCA/SWA indices. In addition, by examining long-term changes of ebb dominance in Mokpo Port, tidal characteristics of the past, present and future in this area, which is related to tidal asymmetry, is also provided.

Analysis on the Movement of Bag-Net in Set-Net by Telemetry Techniques (텔레메트리 기법에 의한 정치망 원통의 거동 해석)

  • 황보규;신현옥;양용림;이주희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.1
    • /
    • pp.24-34
    • /
    • 2001
  • The authors reconstruct a mooring type underwater positioning system to measure the movement of bag-net in a set-net by long base line mode with four transponders attached on the bag-net in latitudinal and a transponder fixed on the sea bed. To confirm the practical use of the system, the field experiments were carried out at the Jaran Bay, Kosung, Kyungnam Prov., on October 6, 2000 (neap tide) and November 28, 2000 (spring tide). And the vertical oscillation of bag-net was observed with three data loggers attached on the bottom of bag-net in longitudinal on November 28, 2000. The longitudinal movement range, the latitudinal one and the vertical one of the bag-net were 3.2 m, 3.4 m and 2.1 m. respectively. At the spring tide, these variations were 7.8 m, 7.8 m and 5.0 m, respectively. The vertical oscillation range about the bottom of the bag-net at near point of the slope net, at the middle part and at far point from the slope net were 3.2 m, 3.7 m and 8.4 m, respectively. The depth of the bottom net was decreased and its vertical oscillation appeared frequently when the current speed was more than 10 cm/s and the current direction was significantly different from the longitudinal axis of the bag-net. The variation of hydrophone coordinates measured by the transponder fixed on the sea bed presents that hydrophones equipped to the frame line of the set-net could be moved within several meters due to the tidal current. The fact indicates that the compensation of hydrophone coordinates is necessary to reduce the measuring errors. The position measuring errors of x, y and z axis of the system measured in the cage of aquaculture were 0.6 m, 0.8 m, and 1.2 m, respectively. And the errors of the transponders those were close to the base lines or placed in the baselines were smaller than those of others.

  • PDF

Temperature and Salinity Distribution in Deukryang Bay in Summer of 1992-93 (1992-93년 하계 득량만의 수온과 염분의 분포)

  • KIM Sang-Woo;CHO Kyu-Dae;RHO Hong-Kil;LEE Jae Chul;KIM Sang-Hyun;SHIN Sang-Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.1
    • /
    • pp.7-14
    • /
    • 1995
  • As a part of the multidisciplinary oceanographic study for the productivity enhancement in Deukryang Bay, temperature and salinity were observed from 1992 through 1993. From the results, only the data in summer of two years are compared. Owing to the contrary meteorolgical conditions in both summers both of temperature and salinity had the patterns of horizontal distributions quite different from each other. In 1992 with low precipitation, there was a tendency of temperature increase and salinity decrease from the bay mouth towards the bay head. In 1993 when the air temperature was abnormally low, isotherms and isotherms tended to be parallel to the local u3s of the bay where the warmer and less saline water distributed along the western coast. Reduced solar radiation and increase in the relative importance of the distribution of properties along the current that was parallel to the axis of the bay could be responsible for this result. Vertical structures of both temperature and salinity were dependent on the stirring effect of tidal current. Stratification was destroyed during the spring tide while it was formed during the neap tide.

  • PDF

TRANSPORT AND DIFFUSION OF POLLUTANTS IN THE COASTAL WATERS OF ONSAN INDUSTRIAL COMPLEX (온산공단 부근의 해양오염물질 이동)

  • CHANG Sun-duck;LEE Jong-Sub;HAN Kyeong-Hwa
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.151-162
    • /
    • 1980
  • To clarify the dispersion of pollutants introduced in the coastal region, a series of current measurements, the drogue and drift bottle experiments as well as the dye diffusion experiments were carried out in Onsan Bay and in the coastal waters of Ubong-ri near Ulsan. In the southeastern coastal region of Korean peninsula, that is, in the outside of Onsan Bay, the flood tidal current flows south-south-westward, and the ebb current flows north-north-eastward at a maximum speed of 1.0-1.1 knots at spring tide. In an inlet south of Cape Ubong, an anticyclonic eddy of 1 km in diameter is usually formed during both flood and ebb flows. The tidal current predominates in Onsan Bay at around spring tide. The maximum speed around spring tide was observed to be approximately 0.14 knot, while it was slower than 0.1 knot and variable at neap tide when the wind drift current played an important role. The flood tidal current flows westward while the ebb flow flows eastward in the northern region of the bay. The flood tidal current in the southern region of the bay flows west-north-westward, while the ebb current east-north-eastward. Wind drift currents in the coastal region of southern Korea are generally deduced to be southward in winter, the monthly mean speed being approximately 0.1 knot. Dye solution released at the northwestern corner in Onsan Bay was transported by eastward ebb tidal current toward the mouth of the bay dispersing by the wind. The apparent diffusion coefficient at 150 minutes after release in the bay was calculated to be $4.4\times10^4\;cm^2.sec^{-1}$, whereas that in the anticyclonic eddy was more or less smaller.

  • PDF

Study of the Tidal Discharge (조석출입량에 관한 조사)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1394-1408
    • /
    • 1968
  • The tidal discharge is defined as the quantity of water flowing through a certain cross-section per unit of time, in contrast to river discharges, tidal discharges change periodically in magnitude and direction. Thus the total volumes of water flowing into again out of the system-called flood volume and ebb volume, respectively, depend on both the tidal and the river discharges. To ditermine the tidal discharge and the flood and ebb volumes of the Yong-san river, the discharges were measured at spring, mean and neap tide and simultaneous gage reading were taken at Samhak-do, Lower Myo-do, Myongsan-ni and Naju. The general procedure for measuring the tidal discharges was as follows. First, several cross-sections were measured and one of them was chosen. First, several cross-sections were measured and one of them was chosen. Then verticals were serected in the chosen cross section. Because comparatively few verticals should be representative of the discharge distribution over the river profile, the selection was done in accordance with the somtimes irregular bottom profile. The velocities were measured with the same current meters. The observations which included water level readings were continued for a period of about 13 hours. The current direction meter, a pyramid shaped resistance body, suspend in the water on a thin wire. The bubble in a circular tilting level fixed to the wire indicates the direction of the current. Reading were taken at intervals of 1m for depths of 10m or less, and for depths over 10m at intervals of 2m, going downwards and upwards. The averages of the two velocities were used for the computation of the discharges. The discharges and the flood and ebb volumes were ditermined by a graphical method. The mean velocities, corrected for their direction when necesary, were ditermined for each time interval and each vertical, and these velocities were plotted against the time. The resulting curves show possible mistakes very clearly, and the effect of observation errors could be reduced. The corrected velocities read from the curve at half-hour intervals were multiplied by the depth at the virtical at the corresponding time. The discharges thus found were ploted against the position of the vertical in the transit and joined by a smooth curve, integration of the curve rendered the total discharges as they occurred of half-hour intervals. Plotting these total discharges against the time yeilded during the day. The flood and ebb volumes were obtained by integration of the total discharge curve.

  • PDF

A Study on the Salinity Variation of Salt Water in an Estuary (하구(河口)의 해수(海水)의 염도변동(鹽度變動)에 관한 연구(研究) - 군산외항(群山外港)부근을 중심(中心)으로 -)

  • Lee, Jong Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 1981
  • Since the estuary is a very complex place in which the sea water and the fresh water meet, it is very difficult to make a general analytical description of salinity distribution in the estuary. As an attempt to investigate the characteristics of salinity variation in the estuary of the Geum River, the field observations were continuously carried out at three points near the Gunsan New Harbor at the time intervals 1 to 1.5 hours during one tidal cycle and the data were analysed. The following results were obtained; 1. It was reconfirmed that most of the ratios of the salinity to the conductivity were widely distributed between the range of 0.5 to 1.0. 2. The salinity showed the peak at the high water, and then it began to decrease gradually and had the lowest value 0 to 2 hours after the low water. 3. The density current was generally the intense mixing type and when the river discharge was very large it was of the moderate type. 4. The vertical salinity distribution was not significantly affected by the wave height. 5. The maximum vertical salinity differences were generally less than 10 g/l and the time of the occurrence of the minimum value was 0 to 3 hours after the low water when in the spring tide and in the neap tide it occurred 2 to 3 hours after the high water.

  • PDF

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

Characteristics of Hydrography and Tidal Current in Hampyung Bay, the Western Coast of Korea (서해 함평만의 해수 물성구조 및 조류 특성)

  • Lee, Kyeong-Sig;Jun, Sue-Kyung
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.247-256
    • /
    • 2009
  • Characteristics of hydrography and tidal currents were investigated in Hampyung Bay through in situ CTD data, tidal currents and elevations. According to the seasonal weather variability, hydrography showed the lower density with high temperature and low salinity in summer and the higher density with low temperature and high salinity in winter. In particular, the thermal structure like a tidal front was formed along the central channel at the neap tide of summer. The critical value of the parameter $SH(=log_{10}(H/U^3)$ where H is depth and U is $M_2$ tidal current amplitude) representing the formation position of tidal front was estimated from 2.4 to 3.5. In addition, the potential energy anomaly $({\phi})$ was ranged between 0.985 and 6.998 Joule/$m^3$, which gradually increased from the mouth into the inner bay. This front may be caused by the unique topography with wide tidal flat and the local difference of tidal current strength. The observed tidal currents at the mouth of bay showed that the ebb time was shorter than the flood time with the increase of depth. This asymmetric ebb-tide dominance is interpreted as a result of tidal distortion by the development of a shallow-water-constituent in Hampyung Bay with a wide macro-tidal flat.

A Study on the Tidal Energy Yield Capability according to the Yaw Angle in Jangjuk Strait (장죽수도에서의 요각변화에 따른 조류에너지 생산량에 관한 연구)

  • Tran, Bao Ngoc;Choi, Min Seon;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.982-990
    • /
    • 2019
  • The interest of researchers and governments in exploiting tidal energy resources is increasing. Jangjuk strait is a place with high tidal energy density potential and is therefore appropriate for the constructing of a tidal turbine farm. In this study, a numerical approach is presented to evaluate the current flow and power potential in Jangjuk strait with an ADCIRC model. Then, the tidal field characteristics are utilized as input parameters for tidal resource calculation with an in-house program. The 1 MW scale tidal energy converter devices are employed and arranged in 4 layouts to investigate the annual energy yield as well as flow deficit due to the wake ef ect at the surveyed area. The best-performed array generates an annual energy yield up to 12.96 GWh/year (without considering the wake effect); this value is reduced by 0.16 GWh/year when accounting for the energy loss caused by the flow deficit. Moreover, by altering the turbine yaw angle during the flood and ebb tides, the impacts of this factor on the energy extraction are analyzed. This indicates that the turbine array attains the maximum tidal power when the turbine yaw angle is at 346° and 164° (clockwise, to the North) for the spring and neap tide in turns.