This study was aimed to classify soil desalination area for cultivation using NDVI (Normalized difference vegetation index) of high-resolution satellite image because the soil salinity affects the change of plant community in reclaimed lands. We measured the soil salinity and NDVI at 28 sites in the Saemangeum reclaimed land in June 2013. In halophyte and non-vegetation sites, no relation was found between NDVI and soil salinity. In glycophyte sites, however, we found that the soil salinity was below 0.1% and NDVI ranged from 0.11 to 0.57 which was greater than the other sites. So, we could distinguish the glycophyte sites from the halophyte sites and non-vegetation, and classify the area that soil salinty was below 0.1%. This technique could save the time and labor to measure the soil salinity in large area for agricultural utilization.
원격탐사 기법은 식생 및 토지이용과 같은 지형조건과 관련된 증발산량을 산정하기 위한 하나의 수단으로 효과적으로 이용될 수 있다. 지표면에서 발생되는 증발산량을 지배하는 인자는 기온, 습도, 바람, 일사량 및 토양조건 둥 매우 복잡하게 구성된다. 식생은 그 지점의 증발산량에 영향을 주고 있으며, 증발산량을 지배하는 복잡한 인자는 식생의 성장조건에 직접적으로 영향을 미친다. 결국 증발산량과 식생조건 사이에는 강한 상관관계가 성립될 수 있음을 예상할 수 있다. 비교적 넓은 지점에 대한 식생상태를 파악을 위해서는 NOAA/AVHRR 자료가 효과적으로 이용될 수 있으며, 이로부터 얻어지는 식생지수(NDVI)를 이용함으로서 증발산량과 NDVI 사이의 강한 상관관계를 생각할 수 있다. 본 연구에서는 이러한 점을 근거로 하여 NDVI와 기상자료를 조합하는 간편한 방법에 의한 실제증발산량 산정방법을 제안한다.
질소 스트레스 조건에서 재배된 연초 (Nicotiana tabacum L.)의 생체량 및 질소영양 상태와 원격측정센서 반사율 지표의 상호관계로부터 센서의 반사율 지표를 활용한 연초의 질소 덧거름 시비량 결정 및 수량 예측을 위한 도구로서의 활용 가능성을 평가하였다. 이식 후 30일째의 rNDVI와 gNDVI, 그리고 40일째의 반사율 지표들은 건물중 및 질소흡수량과 밀접한 정의 상관(P<0.05)을 보였다. 40일째 분광방사계의 gNDVI와 Crop Circle passive 센서의 aNDVI는 각각 건물중을 85%와 84%, 질소흡수량을 85%와 92% 설명하였다. 수량 및 수확기 질소 흡수량은 정식 후 35일, 40일, 45일, 50일, 수확기에 측정된 엽록소 측정값 및 반사율 지표와 고도로 유의성 있는 정의 상관을 보였다. 정식 후 40일째 분광방사계에 의한 gNDVI 지표는 연초 수량변동의 72% 설명 가능한 관계를 나타냈다. 따라서 연초의 경우 이식 후 40일째에 측정한 gNDVI 반사율 지표는 실시간에 비파괴적으로 수량을 예측할 수 있음을 시사하였다. 그리고 40일째 gNDVI로 계산한 충족지수는 질소시비수준의 73%를 설명할 수 있었다. 따라서 반사율 지표를 이용한 충족지수는 연초의 질소영양상태를 추정하여 위치별 변량시비가 가능한 방법으로 활용 가능할 것으로 판단되었다.
원격탐사 기법은 식생 및 토지이용과 같은 지형 조건과 관련된 광역 증발산량을 산정하기 위한 하나의 수단으로 이용될 수 있다. 지면으로부터의 증발산량을 지배하는 인자로는 기온, 습도, 바람, 일사량, 토양조건 등 매우 복잡하게 구성된다. 식생은 그 지점의 증발산량에 영향을 주고 있으며, 증발산량을 지배하는 인자는 식생에 강한 영향을 받고 있다. 따라서 증발산량과 식생조건 사이에는 강한 상관관계가 성립함을 예상할 수 있다. 어느 임의의 지점에서의 식생조건을 파악하기 위하여 NOAA/AVHRR data로부터 얻을 수 있는 NDVI를 이용함으로서 증발산량과 NDVI사이의 강한 상관관계를 생각할 수 있다. 여기서, 증발산량과 NDVI의 관계를 이용하여 직접 실제 증발산량을 산정할 수 있는 방법을 개발한다. 이 방법을 이용하여 지상의 자료가 충분하게 얻어지지 않는 북한 지역을 포함한 한반도 전역에 대한 증발산량의 분포를 파악할 수 있다.
지금까지 증발산량을 산정하기 위한 여러 가지 방법이 개발되어 왔다. 그러나 지표면에서 발생되는 증발산량을 지배하는 복잡한 지형 특성 및 토지 이용 등을 고려하여 정확한 증발산량을 산정한다는 것은 불가능에 가까운 일이다. 원격탐사 기법은 식생과 토지이용과 같은 지형조건과 관련된 증발산량을 산정하기 위한 하나의 수단으로 효과적으로 이용될 수 있다. 증발산량은 기상특성 뿐만 아니라 식생 조건에 의해 지배된다고 볼 수 있다. 그 중 식생조건은 NOAA/AVHRR 자료를 이용하여 얻을 수 있는 정규화 식생지수(NDVI)를 통하여 정량화할 수 있다. 본 연구에서는 금강유역을 대상으로 증발산량을 산정하기 위하여 NDVI와 기온자료를 조합하는 간편법을 제안하고자 한다.
저수구역은 계획된 홍수위에 의하여 둘러싸인 지역 혹은 댐의 계획된 홍수위 내에 있는 지역으로 정의된다. 본 연구에서는 저수구역 내 농경지를 탐지하기 위하여, 대표적인 기계학습 기법인 RF (Random Forest) 기반의 감독 분류 방법을 적용하였다. 저수구역 내의 농경지를 효과적으로 분류하기 위하여, 질감정보를 정량화하기 위한 대표적인 기법인 GLCM (Gray Level Co-occurrence Matrix)과 NDWI (Normalized Difference Water Index), NDVI (Normalized Difference Vegetation Index)를 추가적인 입력자료로 활용하였다. 특히, 질감정보를 생성하는데 사용된 윈도우 크기가 농경지의 분류 정확도에 미치는 영향을 분석하여, 저수구역 내의 농경지를 효과적으로 분류하기 위한 방법론을 제시하였다. 실험결과, UAV 영상을 이용한 분류결과를 통하여 취득된 다중분광영상과 NDVI, NDWI, GLCM 영상들을 이용하여 저수구역 내의 농경지를 효과적으로 탐지할 수 있음을 확인하였다. 또한, GLCM의 윈도우 크기가 분류정확도를 향상시키기 위한 중요한 변수임을 확인하였다.
육상의 지표면 파라미터는 기후와 주로 연관되어 있으므로 육상 관측 위성 영상에 나타나는 많은 물리적 과정은 계절 주기에 따른 시간적 변화를 보인다. 본 연구에서는 계절에 따라 변하는 물리적 과정을 포함하는 시계일 원격 탐사 영상 시리즈를 어댑티브 피드백 시스템에 의해 복원한다. 이 시스템에서는 계절적 변화를 추적하기 위하여 하모닉 모델을 사용하고 수치 영상 모형의 공간적 의존성을 나타내기 위해 깁슨 랜덤 필드를 사용한다. 복원과정을 통하여 구성된 하모닉 모델과 어댑티브 계수에 의해 지표면 연속적 변화를 감시할 수 있다. 본 연구에서는 1996년부터 2000년까지 한반도로부터 관측된 AVHRR 영상 시리즈를 일주일 간격으로 정적 합성하여 NOVI 시리즈를 구하고 하모닉 모델을 사용하는 어댑티브 복원 시스템을 이 NDVI 시리즈를 적용하여 한반도 지표면 변화를 추적하였다. 연구 결과는 하모닉 어댑티브 복원시스템이 거의 실시간으로 지표면 변화를 감시하는데 매우 효과적인 수단이 될 것이라는 잠재성을 보여준다.
This study is to estimate the spatial soil moisture using Terra MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data and machine learning technique. Using the 3 years (2015~2017) data of MODIS 16 days composite NDVI (Normalized Difference Vegetation Index) and daily Land Surface Temperature (LST), ground measured precipitation and sunshine hour of KMA (Korea Meteorological Administration), the RDA (Rural Development Administration) 10 cm~30 cm average TDR (Time Domain Reflectometry) measured soil moisture at 78 locations was tested. For daily analysis, the missing values of MODIS LST by clouds were interpolated by conditional merging method using KMA surface temperature observation data, and the 16 days NDVI was linearly interpolated to 1 day interval. By applying the RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) artificial neural network model, 70% of the total period was trained and the rest 30% period was verified. The results showed that the coefficient of determination ($R^2$), Root Mean Square Error (RMSE), and Nash-Sutcliffe Efficiency were 0.78, 2.76%, and 0.75 respectively. In average, the clay soil moisture was estimated well comparing with the other soil types of silt, loam, and sand. This is because the clay has the intrinsic physical property for having narrow range of soil moisture variation between field capacity and wilting point.
본 연구는 UAV 영상의 식생지수를 활용한 소나무재선충병 피해목 조기 탐지를 그 목적으로 하며, NDVI를 비롯한 대표적인 식생지수들을 선정하고 각각의 분류 정확도 비교분석을 통해 최적의 식생지수를 분석해보았다. 현장답사를 통하여 193개체의 소나무재선충병 피해목 위치데이터를 구축하고 동시에 다중분광 UAV 영상을 이용하여 4가지 식생지수 분석을 수행하였다. 무감독분류(K-Means)를 통하여 피해목을 분류하였고, 오차행렬(Confusion Matrix)를 이용하여 식생지수별 분류정확도를 비교·분석하였다. 연구의 결과를 요약하면 다음과 같다. 첫째 분류의 전체정확도는 NDVI (88.04%, Kappa계수 0.76) > GNDVI (86.01%, Kappa계수 0.72) > NDRE (77.35%, Kappa계수 0.55) > SAVI (76.84%, Kappa계수 0.54)순으로 분석되어 NDVI가 가장 높은 정확도를 보였으며, GNDVI가 거의 비슷한 수준의 분류정확도를 보였다. 둘째, NDVI 및 GNDVI 식생지수를 이용한 K-Means 무감독 분류방법으로 피해목의 판별이 어느 정도 가능한 것으로 판단된다. 특히 위 기법은 연산이 집약적이고 사용자의 개입이 적고 분석과정이 상대적으로 간단하여 피해목의 조기 탐지에 도움을 줄 수 있을 것으로 판단된다. 향후 시계열영상의 활용 또는 딥러닝기법의 추가 응용으로 분류정확도를 높일 수 있을 것으로 기대한다.
원격탐사는 넓은 지역을 직접 접촉하지 않고 정보를 취득할 수 있고 다양한 분야에 적용할 수 있음으로써 급속히 발전하게 되었다. 이에 따라 위성의 제원 또한 원격탐사의 발전과 함께 급속한 발전을 이루게 되었다. 이러한 이유로 여러 분야에서 활용에 관한 연구가 활발히 이루어지고 있다. 현재 활용에 관한 연구는 활발히 이루어지고 있지만, 자료처리에 관련된 연구가 부족한 실정이다. 예전보다 인공위성의 제원이 발전하면서 많은 양의 정보 획득이 가능해진 것과 동시에 데이터 크기 또한 매우 커졌다. 이는 과거에 비해 자료의 처리속도가 저하된다는 단점이 존재한다. 따라서 본 논문에서는 병렬 처리의 한 가지 기법인 NVIDIA에서 제공하고 있는 CUDA (Compute Unified Device Architecture) 라이브러리를 활용하여 위성영상 자료처리 성능의 최적화를 목적으로 하고 있다. 본 연구의 순서는 다음과 같다. 다목적실용위성(Korea Multi-Purpose Satellite, KOMPSAT)의 영상을 크기를 기준으로 5가지 Type으로 나눈다. 이렇게 나누어진 영상을 원격탐사 분야의 한 가지 방법인 NDVI (Normalized Difference Vegetation Index)로 구현한다. 이때 CPU (Central Processing Unit, 중앙처리장치) 기반과 GPU (Graphic Processing Unit, 그래픽처리장치) 기반의 두 가지 방법과 상용 소프트웨어인 ArcMap을 이용하여 NDVI를 구현한다. 그리고 동일한 영상 유무를 판단하기 위해 구현된 결과 영상들을 히스토그램과 시각적으로 비교하고 CPU 버전과 GPU 버전의 처리속도를 비교 분석하였다. 연구결과 CPU 버전과 GPU 버전의 결과 영상은 ArcMap으로 구현한 영상과 시각적 그리고 히스토그램 비교를 통해 같은 결과를 나타내어 NDVI 코드는 올바르게 구현되었으며, 처리속도는 CPU보다 GPU가 약 5배 정도 빠른 것으로 확인하였다. 본 연구에서 병렬 처리의 한 기법인 CUDA 라이브러리를 활용하여 위성영상 자료처리 성능을 향상시킬 수 있었으며, 향후 NDVI와 같은 단순한 픽셀 연산 이외에도 다양한 원격탐사 기법의 적용이 필요할 것으로 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.