• Title/Summary/Keyword: NDVI Technique

Search Result 71, Processing Time 0.022 seconds

A Study on the Mapping of Wind Resource using Vegetation Index Technique at North East Area in Jeju Island (영상자료의 식생지수를 이용한 제주 북동부 지역의 풍력자원지도 작성에 관한 연구)

  • Byun, Ji Seon;Lee, Byung Gul;Moon, Seo Jung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.23 no.1
    • /
    • pp.15-22
    • /
    • 2015
  • To create a wind resource map, we need a contour map, a roughness map and wind data. We need a land cover map for the roughness map of these data. A land cover map represents the area showing similar characteristics after color indexing based on the scientific method. The features of land cover is classified by Remote sensing technique. In this study, we verified the application of the NDVI technique is reasonable after we created the wind resource map using roughness maps by unsupervised classification and NDVI technique. As a result, the wind resource map using the NDVI technique showed a 60% accordance rate and difference in class less than one. From the results, The NDVI technique is found alternative to create roughness maps by the unsupervised classification.

A Seamline Extraction Technique Considering the Characteristic of NDVI for High Resolution Satellite Image Mosaics (고해상도 위성영상 모자이크를 위한 NDVI 특성을 이용한 접합선 추출 기법)

  • Kim, Jiyoung;Chae, Taebyeong;Byun, Younggi
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.5
    • /
    • pp.395-408
    • /
    • 2015
  • High-resolution satellite image mosaics are becoming increasingly important in the field of remote sensing image analysis as an essential image processing to create a large image constructed from several smaller images. In this paper, we present an automatic seamline extraction technique and the procedure to generate a mosaic image by this technique. For more effective seamline extraction in the overlap region of adjacent images, an NDVI-based seamline extraction technique is developed, which takes advantage of the computational time and memory. The Normalized Difference Vegetation Index(NDVI) is an index of plant "greeness" or photosynthetic activity that is employed to extract the initial seamline. The NDVI can divide into manmade region and natural region. The cost image is obtained by the canny edge detector and the buffering technique is used to extract the ranging cost image. The seamline is extracted by applying the Dijkstra algorithm to a cost image generated through the labeling process of the extracted edge information. Histogram matching is also conducted to alleviate radiometric distortion between adjacent images acquired at different time. In the experimental results using the KOMPSAT-2/3 satellite imagery, it is confirmed that the proposed method greatly reduces the visual discontinuity caused by geometric difference of adjacent images and the computation time.

Analysis of Changes in NDVI Annual Cycle Models Caused by Forest Fire in Yangyang-gun, Gangwon-do Using Time Series of Landsat Images

  • Choi, Yoon Jo;Cho, Han Jin;Hong, Seung Hwan;Lee, Su Jin;Sohn, Hong Gyoo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.4
    • /
    • pp.3-11
    • /
    • 2016
  • Sixty four percent of Korean territory consists of forest which is fragile for forest fire. However, it is difficult to detect the disaster-induced damages due to topographic complexity in mountainous areas and harsh weather conditions. For this reason, satellite imaging systems have been widely utilized to detect the damage caused by forest fire. In particular, ground vegetation condition can be estimated from multi-spectral satellite images and change detection technique has been used to detect forest fire damages. However, since Korea has clear four seasons, simple change detection technique has limitation. In this regard, this study applied the NDVI(normalized difference vegetation index) annual cycle modeling technique on time-series of Landsat images from 1991 to 2007 to analyze influence of forest fire of Yangyang-gun, Gangwon-do in 2005 on vegetation condition. The encouraging result was obtained when comparing the areas where forest fire occurs with non-damaged areas. The mean value of NDVI was decreased by 0.07 before and after the forest fire. On the other hand, annual variability of NDVI had been increasing and peak value of NDVI was stationary after the forest fire. It is interpreted that understory vegetation was seriously damaged from the forest fire occurred in 2005.

A Comparative Analysis of Vegetation and Agricultural Monitoring of Terra MODIS and Sentinel-2 NDVIs (Terra MODIS 및 Sentinel-2 NDVI의 식생 및 농업 모니터링 비교 연구)

  • Son, Moo-Been;Chung, Jee-Hun;Lee, Yong-Gwan;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.101-115
    • /
    • 2021
  • The purpose of this study is to evaluate the compatibility of the vegetation index between the two satellites and the applicability of agricultural monitoring by comparing and verifying NDVI (Normalized Difference Vegetation Index) based on Sentinel-2 and Terra MODIS (Moderate Resolution Imaging Spectroradiometer). Terra MODIS NDVI utilized 16-day MOD13Q1 data with 250 m spatial resolution, and Sentinel-2 NDVI utilized 10-day Level-2A BOA (Bottom Of Atmosphere) data with 10 m spatial resolution. To compare both NDVI, Sentinel-2 NDVIs were reproduced at 16-day intervals using the MVC (Maximum Value Composite) technique. As a result of time series NDVIs based on two satellites for 2019 and compare by land cover, the average R2 (Coefficient of determination) and RMSE (Root Mean Square Error) of the entire land cover were 0.86 and 0.11, which indicates that Sentinel-2 NDVI and MODIS NDVI had a high correlation. MODIS NDVI is overestimated than Sentinel-2 NDVI for all land cover due to coarse spatial resolution. The high-resolution Sentinel-2 NDVI was found to reflect the characteristics of each land cover better than the MODIS NDVI because it has a higher discrimination ability for subdivided land cover and land cover with a small area range.

Classification of Terrestrial LiDAR Data through a Technique of Combining Heterogeneous Data (이기종 측량자료의 융합기법을 통한 지상 라이다 자료의 분류)

  • Kim, Dong-Moon;Kim, Seong-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.9
    • /
    • pp.4192-4198
    • /
    • 2011
  • Terrestrial LiDAR is a high precision positioning technique to monitor the behavior and change of structures and natural slopes, but it has depended on subjective hand intensive tasks for the classification(surface and vegetation or structure and vegetation) of positioning data. Thus it has a couple of problems including lower reliability of data classification and longer operation hours due to the surface characteristics of various geographical and natural features. In order to solve those problems, the investigator developed a technique of using the NDVI, which is a major index to monitor the changes on the surface(including vegetation), to categorize land covers, combining the results with the terrestrial LiDAR data, and classifying the results according to items. The application results of the developed technique show that the accuracy of convergence was 94% even though there was a problem with partial misclassification of 0.003% along the boundaries between items. The technique took less time for data processing than the old hand intensive task and improved in accuracy, thus increasing its utilization across a range of fields.

Proposal of Prediction Technique for Future Vegetation Information by Climate Change using Satellite Image (위성영상을 이용한 기후변화에 따른 미래 식생정보 예측 기법 제안)

  • Ha, Rim;Shin, Hyung-Jin;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.3
    • /
    • pp.58-69
    • /
    • 2007
  • The vegetation area that occupies 76% in land surface of the earth can give a considerable impact on water resources, environment and ecological system by future climate change. The purpose of this study is to predict future vegetation cover information from NDVI (Normalized Difference Vegetation Index) extracted from satellite images. Current vegetation information was prepared from monthly NDVI (March to November) extracted from NOAA AVHRR (1994 - 2004) and Terra MODIS (2000 - 2004) satellite images. The NDVI values of MODIS for 5 years were 20% higher than those of NOAA. The interrelation between NDVIs and monthly averaged climate factors (daily mean, maximum and minimum temperature, rainfall, sunshine hour, wind velocity, and relative humidity) for 5 river basins of South Korea showed that the monthly NDVIs had high relationship with monthly averaged temperature. By linear regression, the future NDVIs were estimated using the future mean temperature of CCCma CGCM2 A2 and B2 climate change scenario. The future vegetation information by NOAA NDVI showed little difference in peak value of NDVI, but the peak time was shifted from July to August and maintained high NDVIs to October while the present NDVI decrease from September. The future MODIS NDVIs showed about 5% increase comparing with the present NDVIs from July to August.

  • PDF

Development of Prediction Technique for Future Vegetation Information Using NOAA AVHRR Image and Weather Data Based on Climate Change Scenario (NOAA AVHRR 위성영상과 기후변화 시나리오에 의한 기상자료를 이용한 미래 식생정보 예측 기법 개발)

  • Ha, Rim;Shin, Hyung-Jin;Park, Geun-Ae;Kim, Seong-Joon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.162-168
    • /
    • 2007
  • 기후변화는 강수유형, 기온상승과 일사량의 변화로 인한 증발산량의 변화, 유역 식생피복변화로 인한 지표-대기 관계의 변화와 같은 현상을 통해 지역 부존 수자원과 유출량에 큰 변화를 가져올 수 있다. 특히 지표면의 76%를 차지하고 있는 식생피복은 지표와 대기 사이의 물 순환과정에서 중요한 인자이다. 본 연구에서는 넓은 지역에 대한 식생피복의 파악이 용이한 NOAA 위성의 AVHRR (Advanced Very High Resolution Radiometer) 센서로부터 얻을 수 있는 정규화 식생지수 (Normalized Difference Vegetation Index, NDVI)를 통하여 현 식생정보를 정량화하였다. 이로부터 토지피복별 NDVI와 기상인자(기온, 강수량, 일조시간, 풍속, 습도) 사이의 상관관계를 분석하고, 이를 기후변화 시나리오에 의한 기상인자로 부터 토지피복에 따른 미래 NDVI를 추정하였다.

  • PDF

Assessment of Future Climate Change Impact on DAM Inflow using SLURP Hydrologic Model and CA-Markov Technique

  • Kim, Seong-Joon;Lim, Hyuk-Jin;Park, Geun-Ae;Park, Min-Ji;Kwon, Hyung-Joong
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.25-33
    • /
    • 2008
  • To investigate the hydrologic impacts of climate changes on dam inflow for Soyanggangdam watershed $(2694.4km^2)$ of northeastern South Korea, SLURP (Semi-distributed Land Use-based Runoff Process) model and the climate change results of CCCma CGCM2 based on SRES A2 and B2 were adopted. By the CA-Markov technique, future land use changes were estimated using the three land cover maps (1985, 1990, 2000) classified by Landsat TM satellite images. NDVI values for 2050 and 2100 land uses were estimated from the relationship of NDVI-Temperature linear regression derived from the observed data (1998-2002). Before the assessment, the SLURP model was calibrated and verified using 4 years (1998-2001) dam inflow data with the Nash-Sutcliffe efficiencies of 0.61 to 0.77. In case of A2 scenario, the dam inflows of 2050 and 2100 decreased 49.7 % and 25.0 % comparing with the dam inflow of 2000, and in case of B2 scenario, the dam inflows of 2050 and 2100 decreased 45.3 % and 53.0 %, respectively. The results showed that the impact of land use change covered 2.3 % to 4.9 % for the dam inflow change.

Application of Satellite Data Spatiotemporal Fusion in Predicting Seasonal NDVI (위성영상 시공간 융합기법의 계절별 NDVI 예측에서의 응용)

  • Jin, Yihua;Zhu, Jingrong;Sung, Sunyong;Lee, Dong Kun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • Fine temporal and spatial resolution of image data are necessary to monitor the phenology of vegetation. However, there is no single sensor provides fine temporal and spatial resolution. For solve this limitation, researches on spatiotemporal data fusion methods are being conducted. Among them, FSDAF (Flexible spatiotemporal data fusion) can fuse each band in high accuracy.In thisstudy, we applied MODIS NDVI and Landsat NDVI to enhance time resolution of NDVI based on FSDAF algorithm. Then we proposed the possibility of utilization in vegetation phenology monitoring. As a result of FSDAF method, the predicted NDVI from January to December well reflect the seasonal characteristics of broadleaf forest, evergreen forest and farmland. The RMSE values between predicted NDVI and actual NDVI (Landsat NDVI) of August and October were 0.049 and 0.085, and the correlation coefficients were 0.765 and 0.642 respectively. Spatiotemporal data fusion method is a pixel-based fusion technique that can be applied to variousspatial resolution images, and expected to be applied to various vegetation-related studies.

Assessment of the Ochang Plain NDVI using Improved Resolution Method from MODIS Images (MODIS영상의 고해상도화 수법을 이용한 오창평야 NDVI의 평가)

  • Park, Jong-Hwa;La, Sang-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.9 no.6
    • /
    • pp.1-12
    • /
    • 2006
  • Remote sensing cannot provide a direct measurement of vegetation index (VI) but it can provide a reasonably good estimate of vegetation index, defined as the ratio of satellite bands. The monitoring of vegetation in nearby urban regions is made difficult by the low spatial resolution and temporal resolution image captures. In this study, enhancing spatial resolution method is adapted as to improve a low spatial resolution. Recent studies have successfully estimated normalized difference vegetation index (NDVI) using improved resolution method such as from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS Terra satellite. Image enhancing spatial resolution is an important tool in remote sensing, as many Earth observation satellites provide both high-resolution and low-resolution multi-spectral images. Examples of enhancement of a MODIS multi-spectral image and a MODIS NDVI image of Cheongju using a Landsat TM high-resolution multi-spectral image are presented. The results are compared with that of the IHS technique is presented for enhancing spatial resolution of multi-spectral bands using a higher resolution data set. To provide a continuous monitoring capability for NDVI, in situ measurements of NDVI from paddy field was carried out in 2004 for comparison with remotely sensed MODIS data. We compare and discuss NDVI estimates from MODIS sensors and in-situ spectroradiometer data over Ochang plain region. These results indicate that the MODIS NDVI is underestimated by approximately 50%.