• Title/Summary/Keyword: NDT for concrete

Search Result 74, Processing Time 0.024 seconds

Reliability Evaluation for Prediction of Concrete Compressive Strength through Impact Resonance Method and Ultra Pulse Velocity Method (충격공진법과 초음파속도법을 통한 콘크리트 압축강도 예측의 신뢰성 평가)

  • Lee, Han-Kyul;Lee, Byung-Jae;Oh, Kwang-Chin;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.4
    • /
    • pp.18-24
    • /
    • 2015
  • Non-destructive testing (NDT) methods are widely used in the construction industry to diagnose the defects/strength of the concrete structure. However, it has been reported that the results obtained from NDT are having low reliability. In order to resolve this issue, four kinds of NDT test (ultrasonic velocity measurements by P-wave and S-wave and the impact resonance methods by longitudinal vibration and deformation vibration) were carried out on 180 concrete cylinders made with two kinds of mix proportions. The reliability of the NDT results was analyzed and compared through the measurement of the actual compressive strength of the concrete cylinders. The statistical analysis of the results was revealed that the ultrasonic velocity method by S-wave is having lowest coefficient of variation and also most capable of stable observation. Analytical equations were established to estimate the compressive strength of the concrete from the obtained NDT results by relating the actual compressive strength. Moreover the equation established by the ultrasonic velocity method by S-wave had the highest coefficient of determination. Further studies on the stability of non-destructive testing depending on various mixing conditions will be necessary in the future.

Measurement of Electromagnetic Properties of Mortar for Nondestructive Testing (비파괴 실험을 위한 모르타르의 전자기적 특성 측정)

  • 정성훈;임홍철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.779-784
    • /
    • 1998
  • The velocity and amplitude of microwaves are affected by the electromagnetic properties of a material through which the wave propagates. And the electromagnetic properties of a dielectric material such as concrete is represented by its permittivity. For the development of an accurate and reliable nondestructive testing (NDT) technique for concrete structures using microwave, it is necessary to have knowledge about the permittivity of concrete. In this paper, mortar specimens are used to serve as a basis for further measurement of concrete. The effect of water on the permittivity was studied using specimens with different water content. To assure the reliability of the measurement results, a statistical method was introduced.

  • PDF

Comparison of Longitudinal Wave Velocity in Concrete by Ultrasonic Pulse Velocity Method and Impact-Echo Method (초음파 속도법과 충격반향기법에 의한 콘크리트의 종파 속도 비교)

  • Lee, Hoi-Keun;Lee, Kwang-Myong;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.98-106
    • /
    • 2003
  • Nondestructive test (NDT) provides much information on concrete without damage of structural functions. Of NDT methods, elastic wave propagation methods, such as ultrasonic pulse velocity (UPV) method and impact-echo (IE) method, have been successfully used to estimate the strength, elastic modulus, and Poisson's ratio of concrete as well as to detect the internal microstructural change and defects. In this study, the concretes with water-binder ratio ranging from 0.27 to 0.50 and fly ash content of 20% were made and then their longitudinal wave velocities were measured by UPV and IE method, respectively. Test results showed that the UPV is greater than the longitudinal wave velocity measured by the If method, i.e., rod-wave velocity obtained from the same concrete cylinder. It was found that the difference between the two types of velocities decreased with increasing the ages of concrete and strength level. Moreover, for the empirical formula, the dynamic Poisson's ratio, static and dynamic moduli of elasticity, and velocity-strength relationship were determined. It was observed that the Poisson's ratio and the modulus of elasticity determined by the dynamic method are greater than those determined by the static test. Consequently, for the more accurate estimation of concrete properties using the elastic wave velocities, the characteristics of these velocities should be understood.

Nondestructive Evaluation of Concrete Members using Impact Echo and SASW Methods (충격반향기법과 표면파기법을 이용한 콘크리트 부재의 비파괴 검사)

  • 김동수;박형춘;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.164-168
    • /
    • 1995
  • As nation's infrastructure is getting old, nondestructive evaluation of existing structures and construction quality control are getting important. In this paper non-destructive evaluations of concrete members using impact echo and SASW methods are introduced. Both techniques are based on the stress wave propagations. Experimental tests were performed using beam type concrete member where voids and cracks are included. Within reasonable accuracy, void locations were detected using impact echo method and the dynamic modulus of concrete were measured using SASW method. Both NDT methods showed a feasibility for the implementation into quality evaluaton of concrete members in practice

  • PDF

The Evaluation of Durability by NDT test of Marine-Concrete Structures (항만구조물의 비파괴시험에 의한 안정성 검토)

  • 조병완;이일근;강희풍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.169-172
    • /
    • 1995
  • Establishment of a diagnosing technology for the deterioration of reinforced concrete structures due to salt contamination is urgent, but few analytical methods based on measured data obtained from concrete structures have been presented so far. Chloride penetration into concrete from sea water is generally understood and analysed as diffusion of chloride ion. This paper presents a new method of predicting chloride penetration into concrete based on diffusion theory. Also, it determines the duralility of Marine structure in service with the prediction of remaiing lifetime by the carvonation test.

  • PDF

Accuracy Enhancement of Reflection Signals in Impact Echo Test

  • Lho, Byeong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.924-929
    • /
    • 2003
  • A majority of infrastructures has been deteriorated over time. Therefore, it is very important to verify the quality of construction, and the level of structural deterioration in existing structures, to ensure their safety and functionality. Many researchers have studied non-destructive testing (NDT) methods to identify structural problems in existing structures. The impact echo technique is one of the widely used NDT techniques. The impact echo technique has several inherent problems, including the difficulties in P-wave velocity evaluation due to inhomogeneous concrete properties, deterioration of evaluation accuracy where multiple reflection boundaries exist, and the influence of the receiver location in evaluating the thickness of the tested structures. Therefore, the objective of this paper is to propose an enhanced impact echo technique that can reduce the aforementioned problems and develop a Virtual Instrument for the application via a thickness evaluation technique which has same technical background to find deterioration in concrete structures. In the proposed impact echo technique, transfer function from dual channel system analysis is used, and coherence is improved to achieve reliable data. Also an averaged signal -ensemble- is used to achieve more reliable results. From the analysis of transfer function, the thickness is effectively identified.

Experiments on the Detection of Delamination in FRP Reinforced Concrete (탄소섬유 보강 콘크리트의 박리 탐사 실험)

  • Rhim, Hong-Chul;Jung, Hang-Chul;Woo, Sang-Kyun;Song, Young-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2007
  • With a growing concern about the state of infrastructure worldwide, the demand for the development of reliable nondestructive testing techniques (NDT) is ever increasing. Among possible NDT techniques, microwave method is proven to be effective in fast and non-contact inspection of concrete structures and inclusions inside concrete. It is also found that the microwave method has a potential in detecting the delamination between fiber reinforced polymers (FRP) plate and concrete. On the other hand, ultrasonic method can be another way to find the delamination. In this paper, the research work needed for the development of a reliable microwave method and ultrasonic method is studied in the measurements of concrete specimens reinforced with FRP. Concrete specimens are made with FRP and artificial delamination inside. A microwave measurement system with hom antennas with high center frequency and broad frequency bandwidth are used to image inside concrete specimens for the detection of debonding between concrete and FRP. Also, ultrasonic method is used for the same condition. Both results are compared with each other.

A Study on the Application of NDT(Non-Destructive Testing) Techniques to the Unknown Bridge Foundations (미지의 교량기초에 대한 비파괴 시험기법(NDT)의 적용성에 관한 연구)

  • 채종훈;이원제;유재명;이우진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.317-324
    • /
    • 2000
  • In this study, ten drilled shafts were constructed for evaluating the application of NDT(Non-Destructive Testing) techniques. The drilled shafts, 0.4 m in diameter and 7.0 m in length, were constructed at Namyangju site in Namyangju City. One of the shafts was constructed with no defect, and the other shafts were constructed with the defects of soft bottom, necking, bulging, cave-in and/or weak concrete. Then, these techniques were applied to the bridge foundations for studying unknown bridge foundation characteristics.

  • PDF