• Title/Summary/Keyword: NDIR

Search Result 67, Processing Time 0.03 seconds

Characteristics of Various Ranks of Coal Gasification with $CO_2$ by Gas Analysis (가스분석을 이용한 석탄 종류별 $CO_2$ 가스화 반응특성 연구)

  • Kim, Yong-Tack;Seo, Dong-Kyun;Hwang, Jung-Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.41-49
    • /
    • 2010
  • Various coals from many countries around the world have been used for pulverized coal boiler in power plants in Korea. In this study, the gasification reactivities of various coal chars with $CO_2$ were investigated. Carbon conversion was measured using a real time gas analyzer with NDIR CO/$CO_2$ sensor. In a lab scale furnace, each coal sample was devolatilized at $950^{\circ}C$ in nitrogen atmosphere and became coal char and then further heated up to reach to a desired temperature. Each char was then gasified with $CO_2$ under isothermal conditions. The reactivities of coal chars were investigated at different temperatures. The shrinking core model (SCM) and volume reaction model(VRM) were used to interpret the experiment data. It was found that the SCM and VRM could describe well the experimental results within the carbon conversion of 0-0.98. The gasification rates for various coals were very different. The gasification rate for any coal increased as the volatile matter content increased.

Development of Fast-Response CO2 Analyzer and Analysis of Engine-out Emission during Cold Start of SI Engine (고속응답 CO2 분석기의 제작 및 이를 이용한 SI엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Park, Kyoung-Seok;Park, Dong-Sun;Min, Kyoung-Doug
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2009
  • A fast-response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of a SI engine. The analyzer consists of the non-dispersive infrared absorption method, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it showed 18ms of a response to measure the $CO_2$ concentration. The fast-response $CO_2$ analyzer was applied to a single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for confirming the accuracy of the exhaust gas analysis using the fast-response $CO_2$ analyzer. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated from the $CO_2$ concentration of engine-out emissions and engine operating variables.

Development of Fast-Response $CO_2$ Analyzer and Analysis of Engine-out Emission during Transient Condition of SI engine (고속응답 $CO_2$ 분석기의 제작 및 이를 이용한 SI 엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3079-3084
    • /
    • 2008
  • A fast response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of SI engine. The analyzer is based on the non-dispersive infrared absorption technique, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it has 18ms with a response to measure the $CO_2$ concentration. The fast response $CO_2$ analyzer was applied to single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for considering the engine-out $CO_2$ characteristic. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated and the transient behaviors on engine-out emission and performance will be improved.

  • PDF

A Study on the Emissions of CO2/non-CO2 for the Crown Layer and Surface Layer of Pine Trees (소나무류 수관층 및 지표층의 CO2/non-CO2 배출량 분석 연구)

  • Park, Young Ju;Lee, Hae Pyeong;Baek, Chang Sun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.111-118
    • /
    • 2015
  • In this study, we carried out the emissions analysis of CO and $non-CO_2$ for the age-classes of various pine trees(Pinus koraiensis, Pinus densiflora, Pinus rigida Mill., Pinus thunbergii Parl.) to estimate of emission factors of the crown layer and surface layer in the forest fire. We used the thermal characteristic analyzer cone heater and NDIR analyzer in order to measure amount of emission. As a result, the major emissions of Pinus koraiensis were $CO_2$ and $CH_4$ and that of Pinus thunbergii Parl. was only CO. The major emissions of the most of pine trees were NO and $N_2O$. The $CO_2$ emission of Pinus thunbergii Parl. was the highest about as $7.26{\times}10^{-2}{\sim}1.63{\times}10^{-1}g$ and next came Pinus densiflora, Pinus koraiensis, Pinus rigida Mill.. And the CO emission of Pinus thunbergii Parl. was about $5.14{\times}10^{-3}{\sim}6.58{\times}10^{-3}g$ and followed by Pinus densiflora, Pinus koraiensis, Pinus rigida Mill.. The emissions of $CH_4$, NO, and $N_2O$ showed small differences between species and the emission of $CH_4$ was $8.37{\times}10^{-5}{\sim}2.55{\times}10^{-4}g$, and NO was $6.65{\times}10^{-5}{\sim}2.0{\times}10^{-4}g$ and $N_2O$ was $1.42{\times}10^{-4}{\sim}2.09{\times}10^{-3}g$ in all species. Particularly, the emission of Pinus thunbergii Parl. was the highest in all pine trees except $CH_4$.

Basic Research of Non-Invasive Optical Transcutaneous pCo2 Gas Sensor & Analytic Equipment (비침습적 방법에 의한 광학식 Transcutaneous pCo2 가스센서 및 분석장치 개발을 위한 기초연구)

  • Kim, Do-Eok;Lee, Seung-Ha;Cho, Eun-Jong;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.258-263
    • /
    • 2004
  • In this study, we carried out a basic study for the development of optical transcutaneous $pCO_{2}$ gas sensor and analyzer using non-invasive method. The basic principle of $pCO_{2}$ measurement is adapted Beer lambert's law and embodied the system using NDIR method. This measuring system was composed of a IR lamp, a optical filter, a optical reaction chamber, pyroelectric sensor and a signal process. We measured $EtCO_{2}'s$ concentration in basis step instead of $pCO_{2}$ gas that can collect by inflicting heat in outer skin. We minimize the size of optical reaction chamber which takes up the largest volume, to make the portable sensor. We made optical reaction chamber in Si wafer using MEMS technology and the optical reaction chamber was shortened to 2 mm and we carried out an experiment. When we injected the $EtCO_{2}$ to the inside of the optical reaction chamber, we could confirm change of 4.6 mV. The system response time was within 2 second that is fairly fast.

Development of Emission Factors for Greenhouse Gas (CO2) from Bituminous coal Fired Power Plants (에너지사용시설의 온실가스 배출 특성 연구 -유연탄 화력발전소의 이산화탄소를 중심으로-)

  • Jeon Eui Chan;Sal Jae Whan;Lee Seong Ho;Jeong Jae Hak;Kim Ki Hyun;Bae Wi Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.1
    • /
    • pp.107-116
    • /
    • 2006
  • The main purpose of this study is to develop the greenhouse gas emission factor for power plant using bituminous coal. The power plant is a major source of greenhouse gases among the sectors of fossil fuel combustion, thus information of its emission factors is very essential to the establishment of control strategies for the greenhouse gas emissions. These emission factors derived in this study were compared with those of U. S. EPA, AGO and CCL. The $CO_{2}$ concentrations in the flue gas were measured using NDIR analyser and the GC-FID with a methanizer. The amount of carbon (C) and hydrogen (H) in fuel was measured using an elemental analyzer. Calorific values of fuel were also measured using a calorimeter. Caloric value of bituminous coal used in the power plants were 5,957 (as received basis), 6,591 (air-dried basis) and 6,960 kcal/kg (dry basis). Our estimates of carbon emission factors were lower than those of IPCC. The CO2 emission factors for the power plants using bituminous coal were estimated to be 0.791 Mg/MWh (by carbon contents and caloric value of the fuel) and 0.771 Mg/MWh (by $CO_{2}$ concentration of the flue gas). The $CO_{2}$ emission factors estimated in this study were $3.4\sim 5.4\%$ and $4.4\sim 6.7\%$ lower than those of CCL (2003) and U. S. EPA (2002).

Speculation of Optical Cavity for Improving Optical Gas Sensor's Characteristics (광학적 가스센서 특성 향상을 위한 광 공동 구조의 고찰)

  • Yi, Seung-Hwan;Park, Jong-Seon
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.4
    • /
    • pp.63-68
    • /
    • 2008
  • This paper describes about the simulation and the experimental results of optical cavity with curved mirror surface and vertical mirror surface to improve the light intensity and efficiency of the optical sensors. When we use the vertical mirror surface, the distribution of light reached to the filter surface of detector shows an elliptical shape. Whereas, the curved mirror surface focuses the light into circular shape. Therefore, due to focusing effects in case of using curved mirror surface, the light intensity per unit area has been improved. Consequently, the output voltage of gas sensor has been expected to increase. Based upon the simulation, the experiment of gas sensor has been conducted with $CO_2$ gas from 0ppm to 2,500 ppm at 250 ppm step and $25^{\circ}C$, 45%R.H. ambient. The output voltage of gas sensor that has a curved mirror surface increases approximately 200 mV than that of vertical mirror surface.

  • PDF

Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment Processes (기존수처리 공정 및 고도정수처리 공정에서 NOM의 분자크기 분포 변화)

  • Choi, Il-Hwan;Jung, Yu-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.682-689
    • /
    • 2008
  • The purpose of this study was to find out the variation between molecular size distribution (MSD) of natural organic matter (NOM) in raw waters after different water treatment processes like conventional process (coagulation, flocculation, filtration) followed by advanced oxidation process (ozonation, GAC adsorption). The MSD of NOM of Suji pilot plant were determined by Liquid Chromatography-Organic Carbon Detection (LC-OCD) which is a kine of high-performance size-exclusion chromatography (HPSEC) with nondispersive infrared (NDIR) detector and $UV_{254}$ detector. Five distinct fractions were generally separated from water samples with the Toyopearl HW-50S column, using 28 mmol phosphate buffer at pH 6.58 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface water. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. No more distinct variation of MSD was observed by ozone process after sand filtration but the SUVA value were obviously reduced during increase of the ozone doses. UVD results and HS-Diagram demonstrate that ozone induce not the variation of molecular size of humic substance but change the bond structure from aromatic rings or double bonds to single bond. Granular activated carbon (GAC) filtration removed 8~9% of organic compounds and showed better adsorption property for small MSD than large one.

Characteristics of an Optical Waveguide with Two Identical Elliptical Structures (두 개의 동일한 타원형 구조를 지닌 광 도파관의 특성)

  • Jang, SeongHo;Chung, SangHo;Yi, SeungHwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.48-54
    • /
    • 2014
  • A unique optical waveguide structure is proposed to enhance the optical characteristics of alcohol screening sensors. This structure is then simulated. The structure consists of two elliptical waveguides that have a common focus to one side and has an IR source and detector at each of the other focal points of the ellipses. When the angle between the two elliptical waveguides is increased from 30 degrees to 90 degrees, the maximum level of irradiance is greatly decreased, falling from $2.23{\times}10^6 W/m^2$ to $5.74{\times}10^5W/m^2$. However, the diameter of the incident rays is at a minimum of 1.86mm and the total incident flux is less than 10% lower when compared to the structure at $90^{\circ}$. It can be seen from the simulation results that this structure might enhance the sensitivity of an optical gas sensor which has a large absorption wavelength.

Development and Properties of Carbon monoxide Detector for Ambient Air monitoring (대기오염 측정용 일신화 탄소 검출기의 제작 및 특성)

  • Cho, Kyung-Haeng;Lee, Sang-Wha;Lee, Joung-Hae;Choi, Kyong-Sik
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.222-228
    • /
    • 2000
  • A detector for monitoring carbon monoxide (CO) in ambient air by nondispersive infrared (NDIR) spectroscopy has been developed and investigated its sensitivity and stability. The essential parts of the absorption cell are three spherical concave mirrors so as to improve the sensitivity by increasing the light path length in the cell. The radius and center of curvature of mirrors and position in the cell was calculated by computer simulation in order that the light path length may be 16m into the 50cm cell. The number of traversals and optical path properties were confirmed by laser beam alignment in transparent absorption cell. The photoconductive type lead selenide (PbSe) was used as CO sensing material, which was cooled to increase the responsibility by thermoelectric cooling method. The detection limit and span drift of the developed CO detector was 0.24ppm and 0.03ppm(v/v) respectively.

  • PDF