• Title/Summary/Keyword: NCPX 방법

Search Result 4, Processing Time 0.018 seconds

Study on the Functional Evaluation of Permeable Asphalt Concrete Pavement in Seoul City (서울시 배수성 아스팔트 포장의 기능적 평가 연구)

  • Lee, Sang-Yum;Kim, In-Tae;Mun, Sung-Ho;Kwon, Soo-Ahn
    • International Journal of Highway Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-39
    • /
    • 2012
  • The functional evaluation of constructed permeable pavements was conducted in terms of water permeable performance and noise reduction measurements in Seoul city. The field measurements of noise was based on two methods such as pass-by and novel close proximity(NCPX). The pass-by test and NCPX method are related to noise propagation and tire/pavement interaction noise measurement, respectively. For the water permeable tests, five sections were chosen; furthermore, the measurements were conducted for both of wheel path and non-wheel path area. For the pass-by measurement, three sections were chosen; furthermore, two different locations, which were near measurement point to traffic noise and far measurement point inside park or hosing complex, were selected for each section. Finally, tire/pavement interaction noise measurements were carried out at four locations. The results show that the functional performance of water permeability and noise reduction was well remained within 2 or 3 years after permeable pavement construction.

A Study on Development of a Prediction Model for the Sound Pressure Level Related to Vehicle Velocity by Measuring NCPX Measurement (NCPX 계측 방법에 따른 속도별 소음 데시벨 예측 모델 개발에 대한 연구)

  • Kim, Do Wan;An, Deok Soon;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.21-29
    • /
    • 2013
  • PURPOSES : The objective of this study is to provide for the overall SPL (Sound Pressure Level) prediction model by using the NCPX (Noble Close Proximity) measurement method in terms of regression equations. METHODS: Many methods can be used to measure the traffic noise. However, NCPX measurement can powerfully measure the friction noise originated somewhere between tire and pavement by attaching the microphone at the proximity location of tire. The overall SPL(Sound Pressure Level) calculated by NCPX method depends on the vehicle speed, and the basic equation form of the prediction model for overall SPL was used, according to the previous studies (Bloemhof, 1986; Cho and Mun, 2008a; Cho and Mun, 2008b; Cho and Mun, 2008c). RESULTS : After developing the prediction model, the prediction model was verified by the correlation analysis and RMSE (Root Mean Squared Error). Furthermore, the correlation was resulted in good agreement. CONCLUSIONS: If the polynomial overall SPL prediction model can be used, the special cautions are required in terms of considering the interpolation points between vehicle speeds as well as overall SPLs.

A Study of Eliminating the Vehicle Noise of Engine RPM from the Friction Noise between Tire and Road Pavement by Using a NCPX Method (NCPX 계측방법을 이용한 타이어/노면 사이에서 발생하는 마찰소음에 대한 차량자체에서 발생하는 소음 제거 연구)

  • Han, Bong-Koo;Kim, Do Wan;Mun, Sungho;Kim, Ha-Yeon
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.31-42
    • /
    • 2013
  • PURPOSES : The purpose of this study is to eliminate the noise of the vehicle after measuring the friction noise obtained from the NCPX (Noble Close ProXimity) method. The pure friction noise between the tire and road pavement could be determined from filtering the compositeness of sound and the influence of the vehicle noise. METHODS: The noise magnitude could be determined by analyzing the sound pressure level (SPL) and sound power level (PWL) along with the noise frequency of a FFT (Fast Fourier Transform) analysis as well as CPB (Constant Percentage Bandwidth) analysis. RESULTS: When the test for measuring the friction noise originated somewhere between tire and road pavement is performed with NCPX method, it must be fulfilled by attaching the surface microphone near the tire. In this condition, the surface microphone can measure the friction noise occurred at between tire and pavement, the chassis noise from the engine and power transfer units, the fluctuating aerodynamic noise, and the turbulence noise directly affected to the surface microphone. By using the NCPX method, the noise occurred at the vehicle must be eliminated for measuring the friction noise between tire and pavement from the traffic noise. CONCLUSIONS: The vehicle's testing engine noise depends on the vehicle and road types. The effect of vehicle's engine noise is less than the friction noise occurred at between tire and pavement at less than 1% effect.

Study on the Noise Characteristics of Bridge Deck Pavements in Seoul Inner Ring Road (서울시 내부순환도로 교면포장 형식에 따른 소음특성 연구)

  • Lee, Sang-Yum;Jin, Jung-Hoon;Mun, Sung-Ho;Moon, Hak-Ryong
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2012
  • A measuring technique for tire-pavement interaction noise that uses a proposed noble close proximity(NCPX) method, which has been proofed in terms of the reliability and consistency of interaction noise measurement through several researches, equipped with surface microphones has been adopted in order to perform bridge deck pavement noise evaluations on four different pavement surfaces. Through field testing measurement of bridge deck pavement in Seoul inner ring road, the appropriate noise-measuring procedures have been used for evaluating the noise characteristics of four different surfaces. Measuring results show that tire-pavement noise levels vary depending on the surface types and vehicle speeds. Furthermore, the different characteristics of tire-pavement interaction noise can be found before and after the new surface construction of bridge deck pavements in terms of the 1/3 octave band analysis of vehicle speed.