• Title/Summary/Keyword: NC milling

Search Result 133, Processing Time 0.027 seconds

A Study on the In-process Detection of Fracture of Endmill by Acoustic Emission Measurement (음향방출을 이용한 가공중의 엔드밀 파손 검출에 관한 연구)

  • Yoon, Jong-Hak;Kang, Myung-Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.75-82
    • /
    • 1990
  • Automatic monitoring of the cutting conditions is one of the most improtant technologies in machining. In this study, the feasibility in applying acoustic emission(AE) signals for the in-process detection of endmill wear and fracture has been investigated by performing experimental test on the NC vertical milling machine with SM45C for specimen. As the results of detecting and analyzing AE signals on various cutting conditions, the followings have confirmed. (1) The RMS value of acoustic emission is related sensitively to the cutting velocity, but is not affected largely by feed rate. (2) The burst type AE signals of high level have been observed when removing chips distorderly and discontinuously. (3) When the RMS value grows up rapidly due to the increase of wear the endmill are generally broken or fractured, but when the endmills fracture at the conditions of smooth chip-flow or built-up-edge(BUE) occurred frequently, the rapid change of the RMS arenot found. And it is expected that this technigue will be quite useful for in-process sensing of tool wear and fracture.

  • PDF

Effect of Cusp on the Cutting Characteristics and Tool Wear of Semi-finishing in Ball End Milling (볼엔드밀 중삭가공시 커습에 의한 절삭특성과 공구마모)

  • Cho, Chul-Yong;Mun, Sang-Don;Ryu, Shi-Hyoung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.79-84
    • /
    • 2006
  • In modem manufacturing, many products that have geometrically complicated features, including three-dimensional sculptured surfaces, are designed and produced. In the production of these complex-shaped mechanical components, e.g. automobile dies, molds, and various engineering applications, the ball-end milling process is one of the most widely used NC machining processes that consists of roughing, semi-finishing and finishing. In semi-finishing, cusps remained after roughing according to the used tools that have two patterns of stairs and wave shapes. These cusp shapes have air-cut in cutting and instability caused by high cutting speed that affects the cutting characteristics such as cutting force and tool wear. Cutting characteristics are measured and analyzed through cutting force, FFT analysis of cutting force and tool wear along cutting length according to low tool paths with same metal removal rate. As a results of the experiments, this study suggests the optimal conditions of tool path and cutting direction. This approach for the cutting characteristics of semi-finishing provides a useful aid for the productivity and efficiency improvements of NC machining processes.

Adaptive location of repaired blade for multi-axis milling

  • Wu, Baohai;Wang, Jian;Zhang, Ying;Luo, Ming
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.261-267
    • /
    • 2015
  • Free-form blades are widely used in different industries, such as aero-engine and steam turbine. Blades that are damaged during service or have production deficiencies are usually replaced with new ones. This leads to the waste of expensive material and is not sustainable. However, material and costs can be saved by repairing of locally damaged blades or blades with localized production deficiencies. The blade needs to be further machined after welding process to reach the aerodynamic performance requirements. This paper outlines an adaptive location approach of repaired blade for model reconstruction and NC machining. Firstly, a mathematical model is established to describe the localization problem under constraints. Secondly, by solving the mathematical model, localization of repaired blade for NC machining can be obtained. Furthermore, a more flexible method based on the proposed mathematical model and the continuity of the deformation process is developed to realize a better localization. Thirdly, by rebuilding the model of the repaired blade and extracting repair error, optimized tool paths for NC machining is generated adaptively for each individual part. Finally, three examples are given to validate the proposed method.

PaperMill - A Layered Manufacturing System Using Lamination and Micro Endmill (PaperMill - 박막과 마이크로 엔드밀을 사용한 적층조형 시스템)

  • 배광모;이상욱;이병철;강경수;김형욱;홍영정;진영성;김종철;박정화
    • Korean Journal of Computational Design and Engineering
    • /
    • v.8 no.2
    • /
    • pp.115-121
    • /
    • 2003
  • A new Layered Manufacturing(LM) system, named PaperMill, is developed applying micro milling technology. A micro endmill(127 11m in diameter) is introduced as the cutter of build material. The selected build material for this system is an adhesive-coated paper roll which provides advantages such as good bonding between layers, machinability, and low material cost. A 3-axis CNC controller and three step-motors are used for the movement of X-Y-Z table of the system. For simplicity of the control of mechanism, the control system for feeding the paper roll is uncoupled from CNC controller. Two code converters are developed for the toolpath generation of the new LM system. The NC converter generates a set of NC codes for PaperMill using commercial CAM software while the SML converter generates an NC code from Quickslice's SML format. The NC codes generated from the converters consist of a series of profile data and trigger code for paper feeding. Two sample gears were fabricated to prove the concept of the system, which shown that the dimensional errors of the fabricated gears is under 3.4 percent.

Development of Expert System for Burr Formation Prediction in Face Milling (II) - In Milling Multi Featured workpiece with Multi (밀링가공시 버 형성 예측을 위한 전문가 시스템 개발 (II) - 복잡한 형상의 피삭재와 다중경로에 의한 밀링가공시)

  • 고성림;김영진;장재은;이장범;김지환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.25-33
    • /
    • 2003
  • A burr has been defined as undesirable projection of material formed as a result of plastic flow from a cutting or shearing operation. It is unavoidable in all kinds of machining operation. As a result, burr makes troubles on manufacturing process due to deburring cost, quality of products and productivity. In this study, the primary interest is about exit burr. The burr formation mechanism in each type of burr is classified. Data bases are developed to predict burr formation result. In the milling operation, we develop an algorithm to analyze the burr formation mechanism by the geometrical analysis on the multi featured workpiece with multi cutting path. The algorithm includes three steps, i. e., the feature identification, the cutting condition identification, and the analysis on exit burr formation. We can predict which portion of workpiece would have the exit burr in advance so that we can manage to find a way to minimize the exit burr formation in an actual cutting. Also, this algorithm can be implemented in a commercial CAM package so that we can simulate the NC code to review the burr formation in advance.

Simultaneous 3D Machining with Real-Time NURBS Interpolation

  • Hong, Won-Pyo;Lee, Seok-Woo;Park, Hon-Zong;Yang, Min-Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.336-342
    • /
    • 2003
  • Increasing demand on precision machining using computerized numerical control (CNC) machines have necessitated that the tool move not only with the smallest possible position error but also with smoothly varying feedrates in 3-dimensional (3D) space. This paper presents the simultaneous 3D machining process investigated using a retrofitted PC-NC milling machine. To achieve the simultaneous 3-axis motions, a new precision interpolation algorithm for 3D Non Uniform Rational B-Spline (NURBS) curve is proposed. With this accurate and efficient algorithm for the generation of complex 3D shapes, a real-time NURBS interpolator was developed using a PC and the simultaneous 3D machining was accomplished satisfactorily.

5-axis Milling Machining Time Estimation based on Machine Characteristics (기계 특성에 근거한 5축 밀링가공 시간의 예측)

  • So, B.S.;Jung, Y.H.;Jeong, H.J.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In this paper, we present a machining time estimation algorithm for 5-axis high-speed machining. Estimation of machining time plays an important role in process planning and production scheduling of a shop. In contrast to the rapid evolution of machine tools and controllers, machining time calculation is still based on simple algorithms of tool path length divided by input feedrates of NC data, with some additional factors from experience. We propose an algorithm based on 5-axis machine behavior in order to predict machining time more exactly. For this purpose, we first investigated the operational characteristics of 5-axis machines. Then, we defined some dominant factors, including feed angle that is an independent variable for machining speed. With these factors, we have developed a machining time calculation algorithm that has a good accuracy not only in 3-axis machining, but also in 5-axis high-speed machining.

Study on die plate design and machining using the 3D CAD/CAM system (3D CAD/CAM을 활용한 다이 플레이트의 설계 및 가공)

  • Chio Kye-Kwang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.550-553
    • /
    • 2006
  • This study used the 3D CAD/CAM system in manufacturing die plates to improve productivity. UG NX 3.0 was used as 3D CAD/CAM software, with the created NC code transmitted to the CNC Milling and Wire Cut Electric Discharge machine. The die plate was then automatically machined.

  • PDF

Bicubic Patch체 의한 보간곡면의 모델링 및 가공에 관한 연구

  • 이진모;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1025-1030
    • /
    • 1997
  • In this study,the procedure of interpolation surface modeling on bicubic spline patch equation and NC machining are presented. The procedure consists of three parts : patch modeling,cutter location data generation,post processing and NC milling machining. For generation of the cutter location data,tangent vectors and units normal vectors on the patch must be calculated. In order to investigate the properties of the interpolation surface created by bicubic spline patch, two kinds of end conditions, clamped end condition and relaxed end condition,were applied in this study. The shape of the patch depends on the magnitide of the tangent vectors and twist vectors at the corners of bicubic surface patch. the patch generated by relaxed end condition more approximated to the surface patch which was given.

  • PDF

SPC 기법에 의한 밀링공구의 파손분석 및 검색

  • 서석환;전치혁;최용종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.47-51
    • /
    • 1992
  • Automatic detection of tool breakage during NC machining is a key issue not only for improving productivity but to implement the unattended manufacturing system. In this paper, we develop a vibration sensor-based tool breakage detection system for NC milling processes. The system obtains the time-domain vibration signal from the sensor attached on the spindle bracket of our CNC machine and declares tool failures through the on-line monitoring schemes. For on-line detection, our approach is to use the PSC(statistical process control) methods being increasingly used for on-line process control. The main thrust of this paper is to propose and compare the performance of SPC methods including : a) X-bar control scheme, b) S control scheme, c)EWMA (exponentially weighted moving average) scheme, and d) AEWMA (adaptive exponentially weighted moving average) scheme. The performance of the control schemes are compared in terms of the type 1 and 2 error calculated from the experiment data.