• Title/Summary/Keyword: NC milling

Search Result 133, Processing Time 0.024 seconds

PC Based STEP-NC Milling Machine Operated by STEP-NC in XML Format (XML형식의 STEP-NC파일로 구동되는 PC 기반의 STEP-NC milling machine)

  • 이원석;방영봉
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.185-193
    • /
    • 2002
  • Most of NC machines are operated by Is06983 standard called G-code, which was developed in the early days of machine tools. This G-code limits hardware performance of the currently developed high-performance hardware & machine tools. By describing only movements of tool, almost all of information of previous production departments is lost, and the machining department cannot exchange information with other departments. For adjusting new hardware environment and direct communication of CNC machines with CAD/CAM software, ISO 14649, STEP -NC is researched. This new standard stores CAD/CAM information as well as operation commands of CNC machines. In this research, the new CNC machine operated by STEP-NC was built and tested. Unlike other STEP-NC milling machines, this system uses the STEP-NC file in form of XML as data input. It makes possible for STEP-NC machines to exchange information to other databases using XML. The mentioned system of this paper loads the XML file, analyzes it, makes tool paths of two5D features with information of STEP-NC, and machines automatically without making G-code. All of software is programmed with Visual C++, and the milling machine is made with table milling machine, step motors, and motion control board for PC that can be directly controlled by C++ commands. All modules of software and hardware were independent, it allows convenient for substitution and expansion of the milling machine. The example 1 in ISP14649-11 that had all information about geometry and machining and the example 2 that has only geometry and tool information were used to test automatic machining by the open-architecture milling machine.

Development of ISO14649 Compliant CNC Milling Machine Operated by STEP-NC in XML Format

    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.27-33
    • /
    • 2003
  • G-code, another name of ISO6983, has been a popular commanding language for operating machine tools. This G-code, however, limits the usage of today's fast evolving high-performance hardware. For intelligent machines, the communications between machine and CAD/CAM departments become important, but the loss of information during generating G-code makes the production department isolated. The new standard for operating machine tools, named STEP-NC is just about to be standardized as ISO14649. As this new standard stores CAD/CAM information as well as operation commands of CNC machines, and this characteristic makes this machine able to exchange information with other departments. In this research, the new CNC machine operated by STEP-NC was built and tested. Unlike other prototypes of STEP-NC milling machines, this system uses the STEP-NC file in XML file form as data input. This machine loads information from XML file and deals with XML file structure. It is possible for this machine to exchange information to other databases using XML. The STEP-NC milling machines in this research loads information from the XML file, makes tool paths for two5D features with information of STEP-NC, and machines automatically without making G-code. All software is programmed with Visual $C^{++}$, and the milling machine is built with table milling machine, step motors, and motion control board for PC that can be directly controlled by Visual $C^{++}$ commands. All software and hardware modules are independent from each other; it allows convenient substitution and expansion of the milling machine. Example 1 in ISO14649-11 having the full geometry and machining information and example 2 having only the geometry and tool information were used to test the automatic machining capability of this system.

-Axis NC Milling Simulation (3축 NC 기계 가공 시뮬레이션)

  • 안정호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.423-427
    • /
    • 1993
  • An efficient 3-axis NC milling simulator is presented. The geometric simulation of milling is based on z-map structure and voxels. For the graphic simulation,dimetric projection is adopted. As a result, two faces of a voxel are exposed and they are overlapped. Visible faces are determined by using z-butter method. The simulation system is developed in IBM-PC compatible with satisfactory result.

  • PDF

HIGH-SPEED MILLING FOR DIE AND MOLD MAKING

  • Na, T.kagawa
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.51-60
    • /
    • 2000
  • High-speed milling machine is being sold mainly in the market of die and mold industries, because it reduces machining time greatly as proportion to the spindle speed of machine tool. From the experimental milling tests, it has been cleared that the ball end mill is quite suitable for high speed milling and also tool wear reduces in higher speed milling condition. And a new milling concept with ultra high speed over 100, 000 rpm is proposed for solving the various problems such as NC cutter path generation and NC feed conformity etc.

  • PDF

NC Milling Productivity Incensement by Short Milling Tool Setting Method (NC 밀링에서 짧은 공구설치 방법으로 생산성 향상)

  • Kim, Su-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.60-68
    • /
    • 2008
  • The tool overhang length affects tool deflection and chatter that should be reduced for machined surface quality, productivity and long tool lift. The shortest tool setting algorithm that uses a safe space is proposed and applied with simulation software in NC machining. The safe space in the coordinate fixed in the tool is computed by the virtual machining system that simulates NC machining by stock model, tool model and NC code. The optimal tool assembly that has largest diameter and shortest length is possible using the safe space. This algorithm has been applied over fifty companies for safe and rigid tool setting. The collision accident between holder and stock was reduced from 3 to 0 a year and the productivity was incensed about 15% by using faster feed rate acceptable for shorten tool length.

Cutting Force Prediction in NC Machining Using a ME Z-map Model (ME Z-map 모델을 이용한 NC 가공의 절삭력 예측)

  • 이한울;고정훈;조동우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.86-89
    • /
    • 2002
  • In NC machining, the ability to automatically generate an optimal process plan is an essential step toward achieving automation, higher productivity, and better accuracy. For this ability, a system that is capable of simulating the actual machining process has to be designed. In this paper, a milling process simulation system for the general NC machining was presented. The system needs first to accurately compute the cutting configuration. ME Z-map(Moving Edge node Z-map) was developed to reduce the entry/exit angle calculation error in cutting force prediction. It was shorn to drastically improve the conventional Z-map model. Experimental results applied to the pocket machining show the accuracy of the milling process simulation system.

  • PDF

Utilization of machining templates to improve 5-axis CAM machining process (5축 CAM 가공 작업 프로세스 개선을 위한 가공 템플릿 활용)

  • Lee, Dong-Cheon;Kim, Seon-Yong
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.45-49
    • /
    • 2017
  • Currently, a lot of efforts to make increases the manufacturing efficiency have tried and there is growing the interest to implementing the machining operation through CAM automation and optimization. This kind of movement has shown gradually in 5X milling as well as 3X milling task. By the way, in case of 5X milling, it is difficult to hire the CAM experts who is an experience for 5X machining and also it has too big trouble to use them due to high cost. For this reason, you can see the manufacturer who is concern the CAM S/W to provide the NC automation program that beginners can generate easily the 5X milling in short term and the existing 5X milling process can be improved. These requirements need to make a NC automation process including the practical machining strategies same as the generation by NC expert. In order to support this, it is necessary to directly apply the 3D machining part based on NC template which includes the machining procedures, standard cutter library, auto machine area selection, analyze tool for part shape, machining condition setting considering the material stiffness to be provided by CimatronE and it should be created the 5axis machining data by a minimized operation. With user-friendly, CimatronE's NC machining automation tools improve the 5-axis machining process and speed up the process, maximizing work efficiency and improving product productivity compared to existing machining tasks.

NC Tool Paths Program Development for the Pocket Machining (포켓 가공을 위한 NC 공구경로의 프로그램 개발)

  • Oh, Seon;Kwon, Young-Woong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-81
    • /
    • 2003
  • Pocket machining is metal removal operation commonly used for creating depressions in machined parts. Numerically controlled milling is the primary means for machining complex die surface. These complex surfaces are generated by a milling cutter which removes material as it traces out pre-specified tool paths. To machine, a component on a CNC machine, part programs which define the cutting tool path are needed. This tool path is usually planned from CAD, and converted to a CAM machine input format. In this paper I proposed a new method for generating NC tool paths. This method generates automatically NC tool paths with dynamic elimination of machining errors in 2$\frac{1}{2}$ arbitrary shaped pockets. This paper generates a spiral-like tool path by dynamic computing optimal pocket of the pocket boundary contour based on the type and size of the milling cutter, the geometry of the pocket contour and surface finish tolerance requirements. This part programming system is PC based and simultaneously generates a G-code file.

The Efficient 5-Axis Heel cutting Using Ruled Surface (Ruled Surface를 이용한 효율적인 5축 Heel cutting)

  • 공영식;이희관;양균의
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.862-867
    • /
    • 1997
  • A 5-axis NC milling technology is presented on ruled surface. Problems in 5-axis NC machining are such as tool interference,tool collision and change of tool attitude,etc. The change of tool attitude causes rotation of cutter and variation of feedrate to overcut part surface. This poor control of tool attitude is the primary problem in multi-axis NC milling. This paper observes ruled surface for control of tool attitude. Ruled surface is composed of directrix and ruling, line of constant magnitude. Directrix corresponds to points on part surface and Ruling cutting tool. Trajectory of tool movement corresponds to ruled surface.

  • PDF

Enhancement of a parabolic face working accuracy using volumetric error compensation of NC milling machine (NC 밀링머신의 Volumetric 오차보상을 통한 포물면 가공의 정밀도 향상)

  • 이찬호;정을섭;이응석;김성청
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.917-921
    • /
    • 2000
  • One of the major limitations of productivity and quality in machining is machining accuracy of the machine tools. The machining accuracy is affected by geometric, volumetric errors of the machine tools. This paper suggests the enhancement method of machining accuracy for precision machining of high quality metal reflection mirror or optics lens, etc. In this paper, we study 1) the compensation of linear pitch error with NC controller compensation function using laser interferometer measurement, 2) the method for enhancing the accuracy of NC milling machining by modeling and compensation of volumetric error, 3) the generation of the parabolic face profile. And the method is verified by the parabolic face machining experiment with a vertical three axes NC milling machine. After this study, we will inspect using On-machine measurement and study the repetitive machining by a compensated path

  • PDF