• Title/Summary/Keyword: NC Turning

Search Result 34, Processing Time 0.028 seconds

Monitoring of Machining State in Turning by Means of Information and Feed Motor Current (NC 정보와 이송축 모터 전류를 이용한 선삭 가공 상태 감시)

  • 안중환;김화영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.156-161
    • /
    • 1992
  • In this research a monitoring system for turning using NC information and the current of feed motor as a monitoring signal was developed. The overall system consists of modules such as learning process, NC data transmission, generation of forecast information, signal acquisition, monitoring and post process. In the learning process, the reference data and the cutting force equation necessary for monitoring are obtained from the accumulated monitoring results. In the generation of forecast information, the information of forecasted cutting forces is acquired from the cutting force equation and NC program and appended to each NC block as a monitor code. Reliability of monitoring is improved by using the monitor code in the real-time monitoring. Monitoring module is divided into two parts : the off-line monitoring where errors of NC program are checked and the on-line monitoring where the level of motor current is monitored during cutting operations. If the actual current level exceeds the limit value provided by the monitor code in the level monitoring, it is recognized as abnormal. In the event of abnormal status, the post processor sends the emergency stop signal to NC controller to stop the operation. Actual experiments have shown that the developed monitoring system works well.

Conversational Programming System for NC Lathes (II) (선반용 대화형 프로그래밍 시스템(2))

  • 신동수;김향윤;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1191-1194
    • /
    • 1995
  • A conversational programming system for turning processes was studied to enhance the user friendlness of an NC by adopting man-machine interface functions through Visual C $^{++}$ programming tool under the Windows 95 environment. Shop floor programming performance was incorporated in the developed CAM module. In order to increase flexibility of the man-machine interface, graphic based programmin tool have been developed. An NC turning machine equipped whit an open architecture PCNC was used as a test bed of the system. Perfomance of the system was verified through case studies..

  • PDF

Conversational Programming System for NC Lathes (I) (선반용 대화형 프로그래밍 시스템(I))

  • 신동수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.2
    • /
    • pp.29-39
    • /
    • 1998
  • A conversational programming system for turning processes was studied to enhance the user friendliness of a NC Lathe by adopting man-machine interface functions through Delphi programming tool under the Windows 95 environment. Functions of tool collision checking were developed through zone limitation algorithms. Final shape of workpiece was generated by means of tree structure algorithm. Shop floor programming performance was incorporated in the developed CAM module. In order to increase flexibility of the man-machine interface, graphic based programming tools have been developed. A NC turning machine equipped with an open architecture PCNC was used as a test bed of the system. Performance of the system was verified through case studies.

  • PDF

Turning Machining Optimization using Software Based on Cutting Force Model (절삭력 모델 기반의 소프트웨어를 이용한 선삭가공최적화)

  • Ahn, Kwang-Woo;Jeon, Eon-Chan;Kim, Tae-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.107-112
    • /
    • 2015
  • Increased productivity and cost reduction have emerged as the main goals of the industry due to the development of the machinery industry, and mechanical materials with excellent properties with the development of the machine tool industry are widely used in machine parts or structures. In addition, the cutting process of production plays a pivotal role in the production technology. Studies on cutting have involved a lot of research on the material, the cutting tool, the processing conditions, and numerical analysis. Due to the development of the computer through numerical analysis, cutting conditions, the assessment of cutting performance, and cutting quality could be predicted. This research uses the creation of the material model and AdvantEdge Production module for the NC code analysis. To improve the productivity, this research employs the optimization method to reduce cutting time.

A study on the development of computer assisted manual programming system CAMP (컴퓨터 원용 수동프로그래밍 시스템 CAMP의 개발에 관한 연구)

  • 이재원;조경태;이용표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.285-288
    • /
    • 1988
  • Despite of the low productivity, the manual programming for NC machining is still widly used because of it's economical reasons. In this study, the computer assisted manual programming system CAMP which assits the efficient verification of MCD(Machine Control Data) is presented. The system can detect sysntax errors, graphically display tool motions and eventually diagnose programming techniques. The case study is applied for the NC turning operations.

  • PDF

A Study on the Spherical Lens Manufacturing by Simultaneous 3-Axis for NC Lathe (NC 선반에서 동시 3축을 이용한 구면 렌즈 가공 연구)

  • Lee, Min-Ki;Lee, Eung-Suk;An, Dong-Youl
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.956-961
    • /
    • 2004
  • This paper proposes a study on the spherical lens manufacturing by simultaneous 3 axis for NC lathe. We use friction drive system for moving system in experimental diamond turing machine. The diamond turning machine use manufacturing for high quality lens, mirror and many optics products. Especially, the high tech industry require a lot of lens. For example, optical engineering. medical science, space engineering and material engineering etc. The friction drive system is very simple and quiet, compared to ball screw system. We find a problem at the simultaneous 3 axis and suggest a solution. Also, when we manufactured a micro lens. find a problem and solution.

  • PDF

병렬 NC 기계가공에서 최적 공정계획 생성을 위한 유전알고리즘의 적용

  • 조규갑;문병근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.876-879
    • /
    • 1995
  • Parallel NC machines are a new generation of machine tools aimed at increasing maching accuracy and reducing part cycle time. In addition to their capacity to perform both milling and turning operations, these machine tools can perform multiple machining operations simultaneously,involving one or more parts at a time, and can completely finish a part in a single setup. Due to the lack of a computer-aided process planning system, these machines are used in industry today as dedicated, mass-production machines. This pape presents methodology for generating optimal process plan for each parallel machine tool using a genetic algorithm.

  • PDF

A Study on the Automation of NC Programming for Machining Cam Profile by Biarc Interpolation Method (캠 형상 가공을 위한 Biarc 곡선보간법을 이용한 NC 프로그래밍의 자동화에 관한 연구)

  • Jung, C.Y.;Kim, Y.K.;Yoon, M.C.;Sim, S.B.;Ha, M.K.;Kim, K.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.43-49
    • /
    • 2001
  • For machining auto-mobile cam, the developed biarcs-fitting method eliminates the ridge problems in conventional straight-line fitting approximation or single-arc fitting of curve tool path where it leaves ridges of tool marks on the machined surface of the workpiece. The powerful advantage of this biarc method is demonstrated by applying it to the numerically controlled machining of a curved cam profile, also verified by using a CNC simulating program for auto-mobile cam profile. As a result, this algorithm may be used in CNC milling and turning for cam profile machining with short block line.

  • PDF

Machine Tool Technology;The Present And The Future(7) (공작기계기술의 현재와 미래(7))

  • 강철희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.5-17
    • /
    • 1995
  • 기계가공(Machining)중에서 가장 기본적인 것이 선삭(Turning)작업이며, 이 가공은 선반(Lathe)에 의해서 행하여지고 있는 것은 다 아는 사실이다. 공작기계의 발달과 금속 절삭 원리(Principles of metal cutting)는 선반을 중심으로 약 일세기동안 꾸준히 발전해 오고 있으며, 수없이 쏟아져 나온 연구논문들의 대부분이 선반에 의한 가공과 그 공작기계에 의해서 이루어졌으며 앞으로도 계속 보통선반, CNC선반의 토대 위에서 이루어지리라고 보고 있다. 공작기계 중에서 CNC 선반의 발달 과정을 요약해보면 1960년대의 대량 생산시대에는 Programmable control 방식의 자동 터렛트(Turret) 선반이 개발되어 생산 공정이 비교적 간단한 양산 가공기로서 환영을 받게 되었다. 1970년대에 들어서면서 다품종소량생산이 중요시되었고, 그때 NC 선반시대가 시작되었다고 볼 수 있다. 현 싯점에서 볼 때 이것은 중품종중량생산 이라고 말할 수 있으며, Turret 선반의 NC화 즉, Multi-tool에 의한 선반의 복합가공이 가능해졌지만 Tooling에 문제가 발생하였다. 1980년에 들어서 각종 MC 들이 광범위하게 발달, 보급되는 경향에 따라서 NC 선반도 고능률화의 일환으로 고속화와 더불어 회전공구인 End mill. Drill. Tap 등의 복합가공이 가능한 복합선반이 차례로 개발되었고 선삭공구와 회전공구등의 자동공구교환(Automatic Tool. Changing. ATC)이 가능해지고 Y축 보정(Co-mpensation)기구를 부착한 대형 Turning center가 개발되어 보급되게 되었다.

  • PDF