• Title/Summary/Keyword: NB-IoT

Search Result 24, Processing Time 0.017 seconds

Performance Evaluation of Semi-Persistent Scheduling in a Narrowband LTE System for Internet of Things (사물인터넷을 위한 협대역 LTE 시스템에서의 준지속적 스케줄링의 성능 평가)

  • Kim, Sunkyung;Cha, Wonjung;So, Jaewoo;Na, Minsoo;Choi, Changsoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1001-1009
    • /
    • 2016
  • In LTE networks, the base station transmits control information over the physical downlink control channel (PDCCH) including scheduling grants, which are used to indicate the resources that the user equipment uses to send data to the base station. Because the size of the PDCCH message and the number of the PDCCH transmissions increase in proportion to the number of user equipments, the overhead of the PDCCH may cause serious network congestion problems in the narrowband LTE (NB-LTE) system. This paper proposes the compact PDCCH information bit allocation to reduce the size of the PDCCH message and evaluates the performance of the semi-persistent scheduling (SPS) in the NB-LTE system. The simulation results show that the SPS can significantly reduce the signaling overhead of the PDCCH and therefore increase the system utilization.

ITU-R Study on Frequency Allocation to Narrowband Mobile Satellite Services (NB-MSS) (ITU-R의 협대역 이동위성업무를 위한 주파수 분배 연구 현황)

  • Ku, B.J.;Oh, D.S.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.6
    • /
    • pp.36-45
    • /
    • 2021
  • As the global demand for satellite IoT services using small satellites increases, interest in their frequency requirements has also increased. Consequently, International Telecommunication Union Radiocommunication Sector (ITU-R) preparatory studies for WRC-23 include AI 1.18, which considers new frequency allocations for narrowband mobile satellites. This agenda item was issued in accordance with Resolution 284 (WRC-19), and contributions and reviews by government and satellite operators are underway at ITU-R SG4 WP4C with the aim of completing the study in 2023. Resolution 248 (WRC-19) considers the conditions for transmission of candidate bands and satellites and terminals for narrowband mobile satellite, and all contributions should satisfy narrowband mobile satellite system characteristics parameters within these conditions. However, among the current transmission specifications, there are several views on the exact definition of satellite e.i.r.p., and the derivation schedule of characteristic system parameters for the study is slower than that of the original work schedule. The goal of this paper is to examine the outline of WRC-23 AI 1.18 and the main content of Resolution 284 (WRC-19) and to determine the status of studies related to WRC-23 AI 1.18. The ITU-R's study on this agenda includes updating work schedules, developing the draft required spectrum and system characteristics parameter reports/recommendations, developing draft CPM reports, and examining the various views of transmission specifications in Resolution 284 (WRC-19). Focusing on candidate bands in Region 1 (Europe and Africa) and Region 2 (America), the current status of use in Korea is investigated and future countermeasures in Korea are investigated. In addition, we would like to examine the trend of narrowband mobile satellite through satellite frequency and service status and planning of satellite IoT operators, such as EchoStar, Omnispace, and Sateliot that are participating in the ITU-R study.

스마트항로표지용 최적 통신 시스템에 대한 고찰

  • 조성철;서석;김형진;성기순;황유선;오성민
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.189-191
    • /
    • 2022
  • 본 논문에서는 스마트항로표지용 서비스 요구사항 및 이를 실현할 수 있는 무선 통신 후보 기술을 분석한다. 이를 기준으로 기존 통신 기술과 사물 인터넷용 통신 기술로 분류하고, 요구사항 부합도를 판정하여 스마트항로표지용 최적 통신 시스템으로 AIS, LTE-M, NB-IoT 이상 3종의 통신 방신을 제안한다.

  • PDF

Small-Scale Wind Energy Harvester Using PZT Based Piezoelectric Ceramic Fiber Composite Array (PZT계 압전 세라믹 파이버 어레이 복합체를 이용한 미소 풍력 에너지 하베스터)

  • Lee, Min-Seon;Na, Yong-Hyeon;Park, Jin-Woo;Jeong, Young-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.5
    • /
    • pp.418-425
    • /
    • 2019
  • A piezoelectric ceramic fiber composite (PCFC) was successfully fabricated using $0.69Pb(Zr_{0.47}Ti_{0.53})O_3-0.31[Pb(Zn_{0.4}Ni_{0.6})_{1/3}Nb_{2/3}]O_3$ (PZT-PZNN) for use in small-scale wind energy harvesters. The PCFC was formed using an epoxy matrix material and an array of Ag/Pd-coated PZT-PZNN piezo-ceramic fibers sandwiched by Cu interdigitated electrode patterned polyethylene terephthalate film. The energy harvesting performance was evaluated in a custom-made wind tunnel while varying the wind speed and resistive load with two types of flutter wind energy harvesters. One had a five-PCFC array vertically clamped with a supporting acrylic rod while the other used the same structure but with a five-PCFC cantilever array. Stainless steel (thickness: $50{\mu}m$) was attached onto one side of the PCFC to form the PZT-PZNN cantilever. The output power, in general, increased with an increase in the wind speed from 2 m/s to 10 m/s for both energy harvesters. The highest output power of $15.1{\mu}W$ at $14k{\Omega}$ was obtained at a wind speed of 10 m/s for the flutter wind energy harvester with the PZT-PZNN cantilever array. The results presented here reveal the strong potential for wind energy harvester applications to supply sustainable power to various IoT micro-devices.