• Title/Summary/Keyword: NANOCAPSULE

Search Result 7, Processing Time 0.016 seconds

Characterization of Fe Nanocapsules synthesized by Plasma Arc Discharge Process (플라즈마 아크방전(PAD)법으로 제조된 Fe Nanocapsules의 특성)

  • Park Woo-Young;Youn Cheol-Su;Yu Ji-Hun;Oh Young-Woo;Choi Chul-Jin
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.510-514
    • /
    • 2004
  • Iron-carbon nanocapsules were synthesized by plasma arc discharge (PAD) process under various atmosphere of methane, argon and hydrogen gas. Characterization and surface properties were investigated by means of HRTEM, XRD, XPS and Mossbauer spectroscopy. Fe nanocapsules synthesized were composed of three phases $({\alpha}-Fe,\;Y-Fe\;and\;Fe_{3}C)$ with core/shell structures. The surface of nanocapsules was covered by the shell of graphite phase in the thickness of $4{\~}5$nm.

Nanoencapsulations of Paraffin Wax by Miniemulsion Polymerization and Their Thermal Properties as Phase Change Materials (미니에멀젼 중합에 의한 파라핀 왁스의 나노캡슐화 및 상변환물질로서의 열적 특성)

  • Shin, Dae Cheol;Lee, Kyungwoo;Kim, Jeong Soo
    • Polymer(Korea)
    • /
    • v.37 no.1
    • /
    • pp.15-21
    • /
    • 2013
  • Encapsulation of a paraffin wax core as a phase change material with polystyrene shell and the its thermal characteristics caused by the encapsulation were studied. For the nanoencapsulation, the miniemulsion polymerization method was selected. The factors affecting the thermal properties of prepared nanocapsule particles of phase change material were analysed in aspect of the structure of crosslinking agents, amounts of surfactant, ratio of paraffin wax to monomer, and hydrophilicity of initiators. It was assumed that Oswald ripening plays the most important role in the changes of particle size, particle morphology, and thermal capacity of nanocapsule core. It was elucidated that the thermal capacity was also dependent on the hydrophilicity and crosslinking density of polystyrene shell components.

Efficient Transdermal Penetration and Improved Stability of L-Ascorbic Acid Encapsulated in an Inorganic Nanocapsule

  • Yang, Jae-Hun;Lee, Sun-Young;Han, Yang-Su;Park, Kyoung-Chan;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.499-503
    • /
    • 2003
  • Encapsulation of L-ascorbic acid (vitamin C) within a bio-compatible layered inorganic material was achieved by coprecipitation reaction, in which the layered inorganic lattice and its intercalate of vitamin C are simultaneously formed. The nano-meter sized powders of vitamin C intercalate thus prepared was again encapsulated with silica nano-sol to form a nanoporous shell structure. This ternary nanohybrid of vitamin Clayered inorganic core-$SiO_2$ shell exhibited an enhanced storage stability and a sustained releasing of vitamin C. Furthermore, the nano-encapsulation of vitamin C with inorganic mineral was very helpful in delivering vitamin C molecules into skin through stratum corneum, facilitating transdermal penetration of vitamin C in topical application.

Preparation of Nanocapsules Containing Phase Change Materials by Miniemulsion Polymerization

  • Oh, Keun Jin;Kim, Dae-Su;Lee, Jae Heung;Choi, Kil-Yeong;Lee, Changjin
    • Journal of Adhesion and Interface
    • /
    • v.4 no.1
    • /
    • pp.35-42
    • /
    • 2003
  • Polystyrene nanocapsules containing octadecane as a core material were prepared by miniemulsion polymerization. The morphology and size of the nanocapsules were measured with varying the surfactant concentration, content of initiator, core/shell ratio and content of comonomer. The morphologies of the prepared nanoparticles were examined by a scanning electron microscope, a transmission electron microscope and the core material was confirmed by a differential scanning calorimeter. The particles below 70 nm in diameter were formed at a high surfactant concentration. The size of the nanoparticles was not significantly affected by the initiator content. With increasing the core/shell ratio and polar comonomer content, the particle size and its distribution were increased.

  • PDF

Synthesis and Microstructure of Fe(C) Nanocapsules by Chemical Vapor Condensation (화학기상응축공정으로 제조한 Fe(C) 나노캡슐의 합성 및 미세구조)

  • Lee Jung-Han;Kim Sung-Duk;Kim Jin-Chun;Choi Chul-Jin;Lee Chan-Gyu
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.515-521
    • /
    • 2004
  • Fe(C) nanocapsules were prepared by the chemical vapor condensation(CVC) process using the pyrolysis of iron pentacarbonyl $(Fe(CO)_5)$. Their characterizations were studied by means of X-ray diffraction, X-ray photoelectron spectrometer and transmission electron microscopy. The long-chained Fe(C) nanocapsules hav-ing the mean size of under 70 nm could be obtained below $1100^{\circ}C$ in different gas flow rates. The particle size of the powders was increased with increasing decomposition temperature, but it was decreased with increasing CO gas flow rate. The Fe powders produced at $500^{\circ}C$ consisted of three layers of ${\alpha}$-Fe/$Fe_3C$/amorphous phases, but it had two phase core-shell structure which consited of $Fe_3C$ phase of core and graphite of shell at $1100^{\circ}C$.

Preparation of γ-oryzanol-loaded pectin micro and nanocapsules and their characteristics according to particle size (감마오리자놀 함유 칼슘-펙틴 미세 및 나노캡슐의 제조와 입자 크기에 따른 캡슐특성)

  • Lee, Seul;Kim, Eun Suh;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.1
    • /
    • pp.110-116
    • /
    • 2017
  • ${\gamma}-Oryzanol-loaded$ calcium-pectin micro- and nanocapsules were prepared by ionic gelation to improve oxidation stability and the effect of particle size on capsule properties was investigated. The physical properties were influenced by preparation conditions such as concentrations of pectin, $CaCl_2$, ${\gamma}-oryzanol$, and hardening time. Particle sizes of micro- and nanocapsules that showed the maximum encapsulation efficiency and sustained release were $2.27{\pm}0.02mm$ and $347.7{\pm}58.1nm$, respectively. Microcapsules showed higher encapsulation efficiency ($50.73{\pm}1.98%$) than nanocapsules ($17.70{\pm}2.04%$), while nanocapsules showed more sustained release and higher stability than microcapsules. Release of ${\gamma}-oryzanol$ from both microand nanocapsules, which was low in gastric environments and promoted in intestinal environments, showed suitable characteristics for oral administration. Furthermore, antioxidant activity of ${\gamma}-oryzanol$ against autoxidation of linoleic acid was prolonged by both micro- and nanoencapsulation in a ferric thiocyanate test. Therefore, micro- and nanoencapsulation using pectin can be effective for improving biodelivery, stability, and antioxidant activity of ${\gamma}-oryzanol$.

Characteristics of Glycyrrhiza uralensis extract-loaded chitosan nanocapsules and their antioxidant activity (감초 추출물 함유 키토산 나노캡슐의 특성 및 항산화 활성)

  • Kim, Min Jung;Lee, Ji-Soo;Lee, Hyeon Gyu
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.4
    • /
    • pp.479-485
    • /
    • 2021
  • To improve the oxidative stability of Glycyrrhiza uralensis extract (GU), GU extraction conditions were optimized for maximal antioxidant activity, and GU-loaded nanocapsules were prepared by chitosan ionic gelation. The optimized ethanol concentration and extraction time were 83.0% and 32.6 min, respectively, using response surface methodology. The particle size of the GU-loaded nanocapsules ranged from 280 to 370 nm. A GU extract of 0.8 mg/mL and chitosan concentration of 2.0 mg/mL were selected as the optimal conditions for entrapment and loading efficiency. Both free GU and GU-loaded chitosan nanocapsules exhibited concentration-dependent antioxidant activity. However, the antioxidant protection factor of GU was effectively maintained when it was entrapped within the chitosan nanocapsules. In conclusion, chitosan nanoencapsulation is a potentially valuable technique for improving the oxidative stability of GU.