• Title/Summary/Keyword: NADH:ubiquinone-1 oxidoreductase

Search Result 8, Processing Time 0.023 seconds

HQNO-sensitive NADH:Quinone Oxidoreductase of Bacillus cereus KCTC 3674

  • Kang, Ji-Won;Kim, Young-Jae
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.53-57
    • /
    • 2007
  • The enzymatic properties of NADH:quinone oxidoreductase were examined in Triton X-100 extracts of Bacillus cereus membranes by using the artificial electron acceptors ubiquinone-1 and menadione. Membranes were prepared from B. cereus KCTC 3674 grown aerobically on a complex medium and oxidized with NADH exclusively, whereas deamino-NADH was determined to be poorly oxidized. The NADH oxidase activity was lost completely by solubilization of the membranes with Triton X-100. However, by using the artificial electron acceptors ubiquinone-1 and menadione, NADH oxidation could be observed. The activities of NADH:ubiquinone-1 and NADH:menadione oxidoreductase were enhanced approximately 8-fold and 4-fold, respectively, from the Triton X-100 extracted membranes. The maximum activity of FAD-dependent NADH:ubiquinone-1 oxidoreductase was obtained at about pH 6.0 in the presence of 0.1M NaCl, while the maximum activity of FAD-dependent NADH:menadione oxidoreductase was obtained at about pH 8.0 in the presence of 0.1M NaCl. The activities of the NADH:ubiquinone-1 and NADH:menadione oxidoreductase were very resistant to such respiratory chain inhibitors as rotenone, capsaicin, and $AgNO_3$, whereas these activities were sensitive to 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). Based on these results, we suggest that the aerobic respiratory chain-linked NADH oxidase system of B. cereus KCTC 3674 possesses an HQNO-sensitive NADH:quinone oxidoreductase that lacks an energy coupling site containing FAD as a cofactor.

The Membrane-Bound NADH:Ubiquinone Oxidoreductase in the Aerobic Respiratory Chain of Marine Bacterium Pseudomonas nautica

  • Lee, Young-Jae;Cho, Kyeung-Hee;Kim, Young-Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.2
    • /
    • pp.225-229
    • /
    • 2003
  • Each oxidoreductase activity of the aerobic respiratory chain-linked NADH oxidase system in the marine bacterium Pseudomonas nautica was stimulated by monovalent cations including $Na^+,\;Li^+,\;and\;K^+$. In the presence of NADH or deamino-NADH as electron donors, $GH_2$ formation was approximately 1.3-fold higher in the presense of 0.08 M of $Na^+\;than\;K^+$, Whereas the other reductase activities were not significantly higher in $Na^+\;than\;K^+$. The optimal pH of NADH (or deamino-NADH):ubiquinone-1 oxidoreductase was 9.0 in the presence of 0.08 M NaCl. The activity of NADH (or deamino-NADH):ubiquinone-1 oxidoreductase was inhibited by about 33% with $60{\mu}M$ 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO). The activity of NADH (deamino-NADH): ubiquinone-1 oxidoreductase was inhibited by about 32 to 38% with $80{\mu}M$ rotenone, whereas the activity was highly resistant to capsaicin. On the other hand, electron transfer from NADH or deamino-NADH to ubiquinone-1 generated a membrane potential (${\Delta}{\psi}$) which was larger in the presence of $Na^+$ than that observed in the absence of $Na^+$. The ${\Delta}{\psi}$ was almost completely collapsed by $5{\mu}M$ carbonylcyanide m-chlorophenylhydrazone(CCCP), and approximately 50% inhibited by $100{\mu}M$ rotenone, or $60{\mu}M$ 2-heptyl-4-hydroxyquinoline (HQNO). Also, HQNO made the ${\Delta}{\psi}$ very unstable. The results suggest that the enzymatic and energetic properties of the NADH:ubiquinone oxidoreductase of P. nautica are quite different, compared with those of other marine halophilic bacteria.

Biological activity of quinoline derivatives as inhibitors of NADH-ubiquinone oxidoreductase in the respiratory chain (NADH-ubiquinone oxidoreductase 저해제인 quinoline 유도체들의 생리활성)

  • Chung, Kun-Hoe;Cho, Kwang-Yun;Takahashi, Nobutaka;Yoshida, Shigeo
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.43-48
    • /
    • 1991
  • New quinoline compounds were designed, synthesized, and examined with submitochondria. Most compounds showed high activity against NADH-ubiquinone oxidoreductase. Inhibition activity was mainly affected by the length of the lipophilic part, regardless of bulkiness or location of a phenyl group in the side chain. The $\beta-methyl$ group was demons)rated to be the optimal functionality on the nuclei of the quinoline derivatives so 4hat either deletion or insertion of a methylene on the group eliminated its activity.

  • PDF

Functional Expression of the Internal Rotenone-Insensitive NADH-Quinone Oxidoreductase (NDI1) Gene of Saccharomyces cerevisiae in Human HeLa Cells

  • Seo, Byoung-Boo
    • Journal of Embryo Transfer
    • /
    • v.25 no.1
    • /
    • pp.35-42
    • /
    • 2010
  • Many studies propose that dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I) is associated with neurodegenerative disorders, such as Parkinson's disease and Huntington's disease. Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. With a recombinant adeno-associated virus vector carrying the NDI1 gene (rAAV-NDI1) as the gene delivery method, we were able to attain high transduction efficiencies even in the human epithelial cervical cancer cells that are difficult to transfect by lipofection or calcium phosphate precipitation methods. Using a rAAV-NDI1, we demonstrated that the Ndi1 enzyme is successfully expressed in HeLa cells. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced HeLa cells were not affected by rotenone which is inhibitor of complex I, but was inhibited by flavone and antimycin A. The NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. In particular, in the NDI1-transduced cells, the yeast enzyme becomes integrated into the human respiratory chain. It is concluded that the NDI1 gene provides a potentially useful tool for gene therapy of mitochondrial diseases caused by complex I deficiency.

Functional Expression of Saccharomyces cerevisiae NADH-quinone Oxidoreductase (NDI1) Gene in the AML12 Mouse Liver Hepatocytes for the Applying Embryonic Stem Cell

  • Seo, Byoung-Boo;Park, Hum-Dai
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.427-434
    • /
    • 2011
  • Mitochondria diseases have been reported to involve structural and functional defects of complex I-V. Especially, many of these diseases are known to be related to dysfunction of mitochondrial proton-translocating NADH-ubiquinone oxidoreductase (complex I). The dysfunction of mitochondria complex I is associated with neurodegenerative disorders, such as Parkinson's disease, Huntington's disease, and Leber's hereditary optic neuropathy (LHON). Mammalian mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) is largest and consists of at least 46 different subunits. In contrast, the NDI1 gene of Saccharomyces cerevisiae is a single subunit rotenone-insensitive NADH-quinone oxidoreductase that is located on the matrix side of the inner mitochondrial membrane. The Saccharomyces cerevisiae NDI1 gene using a recombinant adeno-associated virus vector (rAAV-NDI1) was successfully expressed in AML12 mouse liver hepatocytes and the NDI1-transduced cells were able to grow in media containing rotenone. In contrast, control cells that did not receive the NDI1 gene failed to survive. The expressed Ndi1 enzyme was recognized to be localized in mitochondria by confocal immunofluorescence microscopic analyses and immunoblotting. Using digitonin-permeabilized cells, it was shown that the NADH oxidase activity of the NDI1-transduced cells was not affected by rotenone which is inhibitor of complex I, but was inhibited by antimycin A. Furthermore, these results indicate that Ndi1 can be functionally expressed in the AML12 mouse liver hepatocytes. It is conceivable that the NDI1 gene is powerful tool for gene therapy of mitochondrial diseases caused by complex I deficiency. In the future, we will attempt to functionally express the NDI1 gene in mouse embryonic stem (mES) cell.

Enhanced PHB Accumulation in Photosystem- and Respiration-defective Mutants of a Cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis sp. PCC 6803의 에너지 대사 결함 돌연변이 균주에서의 Poly(3-hydroxybutyrate) 축적량 증진)

  • Kim Soo-Youn;Choi Gang Guk;Park Youn Il;Park Young Mok;Yang Young Ki;Rhee Young Ha
    • Korean Journal of Microbiology
    • /
    • v.41 no.1
    • /
    • pp.67-73
    • /
    • 2005
  • Photoautotrophic bacteria are promising candidates for the production of poly(3-hydroxybutyrate) (PHB) since they can address the critical problem of substrate costs. In this study, we isolated 25 Tn5-inserted mutants of the Synechocystis sp. PCC 6803 which showed enhanced PHB accumulation compared to the wild-type strain. After 5-days cultivation under nitrogen-limited mixotrophic conditions, the intracellular levels of PHB content in these mutants reached up to $10-30\%$ of dry cell weight (DCW) comparable to $4\%$ of DCW in the wild-type strain. Using the method of inverse PCR, the affected genes of the mutants were mapped on the completely known genome sequence of Synechocystis sp. PCC 6803. As a result, the increased PHB accumulation in 5 mutants were found to be resulted from defects of genes coding for NADH-ubiquinone oxidoreductase, O-succinylbenzoic-CoA ligase, photosystem II PsbT protein or histidine kinase, which are involved in photosystem in thylakoid inner membrane of the cell. The values of $NAD(P)H/NAD(P)^+$ ratio in the cells of these mutants were much higher than that of the wild-type strain as measured by using pulse-amplitude modulated fluorometer, suggesting that PHB synthesis could be enhanced by increasing the level of cellular NAD(P)H which is a limiting substrate for NADPH-dependent acetoacetyl-CoA reductase. From these results, it is likely that NAD(P)H would be a limiting factor for PHB synthesis in Synechocystis sp. PCC 6803.

Identification of Functional and In silico Positional Differentially Expressed Genes in the Livers of High- and Low-marbled Hanwoo Steers

  • Lee, Seung-Hwan;Park, Eung-Woo;Cho, Yong-Min;Yoon, Duhak;Park, Jun-Hyung;Hong, Seong-Koo;Im, Seok-Ki;Thompson, J.M.;Oh, Sung-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1334-1341
    • /
    • 2007
  • This study identified hepatic differentially expressed genes (DEGs) affecting the marbling of muscle. Most dietary nutrients bypass the liver and produce plasma lipoproteins. These plasma lipoproteins transport free fatty acids to the target tissue, adipose tissue and muscle. We examined hepatic genes differentially expressed in a differential-display reverse transcription-polymerase chain reaction (ddRT-PCR) analysis comparing high- and low-marbled Hanwoo steers. Using 60 arbitrary primers, we found 13 candidate genes that were upregulated and five candidate genes that were downregulated in the livers of high-marbled Hanwoo steers compared to low-marbled individuals. A BLAST search for the 18 DEGs revealed that 14 were well characterized, while four were not annotated. We examined four DEGs: ATP synthase F0, complement component CD, insulin-like growth factor binding protein-3 (IGFBP3) and phosphatidylethanolamine binding protein (PEBP). Of these, only two genes (complement component CD and IGFBP3) were differentially expressed at p<0.05 between the livers of high- and low-marbled individuals. The mean mRNA levels of the PEBP and ATP synthase F0 genes did not differ significantly between the livers of high- and low-marbled individuals. Moreover, these DEGs showed very high inter-individual variation in expression. These informative DEGs were assigned to the bovine chromosome in a BLAST search of MS marker subsets and the bovine genome sequence. Genes related to energy metabolism (ATP synthase F0, ketohexokinase, electron-transfer flavoprotein-ubiquinone oxidoreductase and NADH hydrogenase) were assigned to BTA 1, 11, 17, and 22, respectively. Syntaxin, IGFBP3, decorin, the bax inhibitor gene and the PEBP gene were assigned to BTA 3, 4, 5, 5, and 17, respectively. In this study, the in silico physical maps provided information on the specific location of candidate genes associated with economic traits in cattle.