• Title/Summary/Keyword: NACA

Search Result 358, Processing Time 0.026 seconds

An experimental study on the transitional boundary layer developing on NACA0012 airfoil (NACA0012 날개 위의 천이 경계층에 관한 실험적 연구)

  • Gang, Sin-Hyeong;Sin, Sang-Cheol;Lee, Hyeon-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1689-1699
    • /
    • 1996
  • A study on the transitional boundary layer with arbitrary pressure gradient under various upstream conditions is very important for engineering applications like the performance predictions of the turbomachineries under various and strong disturbances. Experimental data on the transitional boundary layer for real cascades of the turbomachinery are rare because of difficulties in boundary layer experiments. Flow on NACA0012 airfoil is more similar to the real case than that on the flat plate with which many researches are done. The data of the transitional flow on the airfoil could be used to verify or to develop a turbulence model for numerical simulations. The experiment was performed with two cases of Reynolds number at a=0$^{0}$ and one case of Reynolds number at a=5$^{0}$ . The measured data are the transition length and the wall shear stresses. These two characteristic values are measured within 25%~90% of the airfoil chord by Computation Preston tube Method(CPM) proposed by Nitsche et al.(1983). At a=0$^{0}$ , transition occured at 70% and 55% of chord length when R $e_{c}$=6*10$^{5}$ and 8* 10$^{5}$ , respectively. It started when R {\theta}=500 regardless of R $e_{c}$, and ended when R {\theta}=750, and 850 respectively. The transition length was 15~20% of the chord length. At a=5$^{0}$ (R $e_{c}$=6*10$^{5}$ ), boundary layer on the pressure side does not undergo transition, but on the suction side transition occured at .chi.$_{c}$/c=0.16 and ended at .chi.$_{c}$/c=0.22.c//c=0.22./c=0.22.c//c=0.22.

Flutter Analysis of 2D Airfoil with Gurney Type Flap (Gurney 플랩이 장착된 2차원 익형의 플러터 해석)

  • Bae, Eui-Sung;Joo, Wan-Don;Lee, Dong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • Flutter analysis of NACA 0012 with Gurney flap was conducted in time domain. Flutter analysis was performed with a conjunction of two governing equations; one is 2D Navier-Stokes equation and, the other is Lagrange equation of two dimensional plunge & pitch model. Both governing equations were coupled by loose-coupling method. From the computed results, the effect of Gurney flap was concluded to move the flutter boundary of NACA 0012 downward, which means flutter occurs at lower speed than that of NACA 0012. Although flutter boundary of gurney flap was above the safety margin when mach number was lower than 0.85, there might be a possibility of crossing the safety margin when mach number was between 0.85 and 0.9. For safety, the effect of gurney flap needs to be investigated carefully before using it.

진동하는 익형(NACA0012)의 공력특성 : Re~$8x10^5$, k<0.1

  • Cho, Tae-Hwan;Youn, Sung-Jun;Chang, Beong-Hee
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.36-41
    • /
    • 2005
  • The aerodynamic characteristics of the oscillating airfoil(NACA0012) were measured by experimental methods by using the airfoil oscillating test rig installed at KARI 1m wind tunnel. The chord of the airfoil is 0.2m and the span is 0.75m. The lift and pitching moments were calculated by integrating the surface pressure measured by strain-gage type pressure sensors. The test condition is like this : the reduced oscillating frequency(k) < 0.1, Re ~ 820,000, Mach < 0.25. The test results were compared with the reference data published by other facilities.

  • PDF

Effect of Blade Sweep on the Performance of the Wells Turbine for Wave Power Conversion (파력발전용 웰즈터빈성능에 미치는 날개 Sweep의 영향)

  • Kim, Tae-Ho;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.961-966
    • /
    • 2001
  • The Wells turbine is one of the simplest and most promising self-rectifying air turbines which are useful for the systems of alternative energy development in near future, and it is economically desirable from the point of view of the practical use, as well. To investigate the effect of blade sweep on the performance of the Wells turbine, computations of a fully 3-D Navier-Stokes are carried out under steady flow conditions of NACA0020 blade. It is known that the performance of the Wells turbine is considerably influenced by the blade sweep. An optimum blade sweep ratio(f=0.35) for the NACA0020 is found to be the most promising for the practical use, and this value is in good agreement with the previous experiments. It is also found that the overall turbine performance for the NACA0020 is better than that for the CA9.

  • PDF

A Fundamental Study on Wind Turbine Model of the Wind Power Generation (풍력발전용 모형터빈에 관한 기초적연구)

  • Kim, J.H.;Nam, C.D.;Kim, Y.H.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1014-1019
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

Unsteady Force Characteristics on Foils Undergoing Pitching Motion (피칭 운동익에 작용하는 비정상 유체력)

  • Yang Chang-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.117-125
    • /
    • 2006
  • In the present study the unsteady forces acting on the pitching foils such as a flat plate, NACA0010, NACA0020, NACA65-0910 and BTE have been measured by using a six-axis sensor in a circulating water tunnel at a low Reynolds number region. The unsteady characteristics of the dynamic drag and lift have been compared to the quasi-steady ones which are measured under the stationary condition. The pitching motion is available for keeping the lift higher after the separation occurs. Especially, the characteristics of the dynamic lift are quite different from the quasi-steady one at high pitching frequency regions. As the pitching frequency deceases, the amplitude of the dynamic lift becomes closer to the quasi-steady one. However, the phase remains different between the steady and unsteady conditions even at low pitching frequencies. On the other hand, the dynamic drag is governed strongly by the angle of attack.

A Basis Study on Optimum Design of Air Turbine for Wind Power Generation (풍력발전용 공기터빈의 최적설계에 관한 기초 연구)

  • 김정환;김범석;김윤해;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1091-1097
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected . A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental results. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is conclued that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

SEPARATION CONTROL USING SYNTHETIC JET ON NACA23012 AT HIGH ANGLE OF ATTACK (고받음각의 NACA23012익형에서 synthetic jet을 이용한 박리 제어 연구)

  • Kim S. H.;Kim C.;Kim K. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.125-129
    • /
    • 2005
  • Flow control has been performed using synthetic jet on NACA23012. In order to improve aerodynamic performance, synthetic jet is located near separation paint on airfoil with leading edge droop and plain flap. The flow control using synthetic jet shows that stall characteristics and control surface performance can be improved through resizing separation vortices. Stall is delayed and stall characteristics are improved when synthetic jet is applied from separation region of leading edge droop. Control surface effectiveness is increased and lift is increased when synthetic jet applied at the flap leading edge region. The results show that aerodynamic characteristics can be improved through leading edge droop with synthetic jet at near separation and plain flap with synthetic jet at the flap leading edge. The combination of synthetic jet and simple high lift device is as good as fowler flap system.

  • PDF

TURBULENT FLOW SIMULATION ON THE GROUND EFFECT ABOUT A 2-DIMENSIONAL AIRFOIL (2차원 날개 주위의 지면효과에 대한 난류 유동장 해석)

  • Kim, Y.S.;Lee, J.E.;Shin, M.S.;Kang, K.J.;Kwon, J.H.
    • Journal of computational fluids engineering
    • /
    • v.11 no.4 s.35
    • /
    • pp.81-89
    • /
    • 2006
  • Two dimensional turbulent flow simulations on the low Mach number - high Reynolds number flow about the NACA 4412 airfoil are carried out as the airfoil approaches a ground. It has turned out that angle of attack between 2 and 8 degrees is recommended for the airfoil to utilize the benefit of ground effect. For the large angle of attack, the increment of lift due to the ground effect is faded away and negative aerodynamic effect such as destabilizing aspect in static longitudinal stability occurs and the separation point moves to forward as the airfoil approaches a ground.

Computational Study on the hydrodynamic force of 2D Hydrofoil and the Effect of Trim Tab (2D Hydrofoil의 유체력과 Trim Tab효과에 대한 수치해석적연구)

  • Jung, Rho-Taek
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.392-394
    • /
    • 2011
  • This paper is concerned about the hydrodynamic coefficients of hydrofoil. We discretized the incompressible Navier-Stokes equation with second order Runge-kutta for the time in the second order compact scheme for the spatial. The three-dimensional CFD code based on hybrid mesh on the finite volume method is used to simulate flow around NACA series foils. Lift and drag coefficient is calculated for several NACA series foils using different mesh types. Our aim is to obtain the lift and drag coefficient to evaluate the robustness of the solver and to shaw the advantage of using trim tab at the trailing edge. It concludes with a discussion of results and recommendations for future work.

  • PDF